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Definition
▶ Let T be a tree and x ∈ T . The set of immediate successors

of T is denoted by IT (x).
▶ Let λ be a cardinal. A tree T is λ-branching [respectively

<λ-branching] iff for every x ∈ T , |IT (x)| = λ [respectively
|IT (x)| < λ].

▶ A tree T is finitely branching if it is <ℵ0-branching. It is
infinitely branching if |IT (x)| ≥ ℵ0 for every x ∈ T .

▶ A subtree of a tree T is a subset S of T such that for every
s ∈ S and t ∈ T , if t < s, then t ∈ S .

Lemma
Let T be an ℵ1-tree. If T has no uncountable 1-branching
subtrees, then T is Aronszajn.

Proof.
If b is a cofinal branch, then b is an uncountable 1-branching
subtree.



Definition
An infinitely branching ℵ1-tree T is Lindelöf iff every finitely
branching subtree of T is countable.
The previous lemma shows that

{Lindelöf} ⊆ {Aronszajn}

We will show that the inclusion is proper.
First, we explain the terminology: Trees are Lindelöf if and only if
they have they are Lindelöf spaces with respect to a natural
topology.

Definition (Nyikos)
Let T be a tree. The fine wedge topology on T is generated by all
sets of the form ↑x and their complements, where
↑x = {y ∈ T : x ≤ y} and x ∈ T .
If X ⊆ T , write ↑X = {y ∈ T : ∃x ∈ X (x ≤ y)}.



Lemma
If x ∈ T , the family {↑x \ ↑F : F ∈ [I (x)]<ω} is a local basis of
open neighbourhoods of x . In particular, the topology is Hausdorff.

Proof.
Let x ∈ W = (↑x0) ∩ · · · ∩ (↑xn−1) ∩ (↑y0)

c ∩ · · · ∩ (↑ym−1)
c .
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Since T is a tree, {xi : i < n} is a chain, say with maximum x0.
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It therefore suffices to study open covers of the form
Uf = {↑x \ ↑f (x) : x ∈ T}, where f ∈

∏
x∈T [I (x)]

<ω.

Definition
Given f ∈

∏
x∈T [I (x)]

<ω, we will say that x ∈ T is safe iff for
every y < x , x ∈ ↑f (y).
Note that the set of safe points is a finitely branching subtree of T .

Lemma
Let T be an infinitely branching ℵ1-tree and f ∈

∏
x∈T [I (x)]

<ω.
The following are equivalent:

1. f has no countable subcover.
2. Every level has a safe point.
3. The set of {ht(x) : x is safe} is uncountable.



Theorem (M.)
Let T be an infinitely branching ℵ1-tree. Then T is a Lindelöf tree
if and only if it has the Lindelöf property with respect to the fine
wedge topology.

Proof.
⇒) Let f code a cover with no countable subcover. Let S be the
set of safe points. By the previous lemma, S is uncountable.
⇐) Let S be an uncountable finitely branching subtree of T .
Define f (x) = ∅ for x ∈ T \ S and f (x) = IS(x) for x ∈ S .
If x ∈ S and y < x , then x ∈ ↑f (y), so x is safe for S . So
S ⊆ {x ∈ T : x is safe}, hence the latter is uncountable.



Recall that if T is a tree, an antichain is a set of pairwise
incomparable elements of T . A Suslin tree is a tree with no
uncountable chains or antichains.
If T is a tree, PT is the dual order.

Lemma (folklore [2])
Let T be a Suslin tree. The poset PT has the ccc and is countably
distributive. Moreover, if D ⊆ PT is dense and open, then there
exists α < ω1 such that T ↾[α, ω1) ⊆ D.

Lemma (folklore [2])
Let T be a Suslin tree in the universe V . If W is an outer model
and b ∈ W is a cofinal branch through T , then b is PT -generic
over V .



Theorem (M.)
Let T be an infinitely branching Suslin tree. Then T is Lindelöf.

Proof.
Suppose not. Let S ⊆ T be a finitely branching uncountable
subtree. Then S is also Suslin. Force with PS to add a branch b.
By the previous lemma, b is PT -generic over V . But S is finitely
branching and T is infinitely branching, so b is disjoint from S
above some node of T , by a density argument.

{Suslin} ⊆ {Lindelöf} ⊆ {Aronszajn}



A non-Lindelöf Aronszajn tree

Let e⃗ = ⟨eα : α < ω1⟩ be a
coherent sequence of injections,
i.e. eα : α → ω is injective and
eα =∗ eβ .
Use a bijection f : ω1 × ω → ω1
to transfer e⃗ to a coherent
sequence ⟨f [eα] : α < ω1⟩, which
is then used to build a binary
Aronszajn tree T .
Now recursively build, level by
level, an infinitely branching tree
U which has T as a subtree.

γ limit
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{Suslin} ⊆ {Lindelöf} ⊊ {Aronszajn}



(♢) A special Lindelöf tree

Let f⃗ = ⟨fα : α ∈ lim(ω1)⟩ be such fα : α → [α]<ω and f⃗ guesses
any f : ω1 → [ω1]

<ω stationarily often.
Build an infinitely branching tree T with underlying set ω1 together
with a specializing function φ : T → Q by recursion on levels,
maintaining that if φ(x) < q then there is some y > x with
φ(y) = q.
At stage α = ω · α, for each pair (x , q) ∈ (T ↾α)×Q with
φ(x) < q, choose a cofinal branch b through T ↾α such that x ∈ b,
sup(φ“b) = q and the unique point of b immediately above x is not
in fα(x). Then put a new node y ∈ Tα above b and let φ(y) = q.
Every y ∈ Tα is obtained as above from some (x , q) and
y ∈ (↑x) \ ↑fα(x), hence fα↾(T ↾α) covers T .
Therefore, T is Lindelöf and so, under ♢,

{Suslin} ⊊ {Lindelöf} ⊊ {Aronszajn}



Definition
Let T be a normal infinitely branching ℵ1-tree. Consider the
following poset P: conditions are functions p ∈

∏
x∈F [I (x)]

<ω,
where F ∈ [T ]<ω, such that:

∀x , y ∈ dom(p) (x < y → y↾(ht(x) + 1) ∈ p(x)) .

The order on P is inclusion, p ≤ q ⇐⇒ p ⊇ q.
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∈ p(x)

The generic subtree will be Ṡ =
⋃
{dom(p) : p ∈ Ġ}.

If p ∈ P and x ∈ dom(p), then p is a promise that p(x) = IṠ(x).



Theorem (M.)
If T is a normal, infinitely branching Aronszajn tree, then P has the
ccc and ⊩P Ṡ is a finitely branching normal subtree of T .
Is T still Aronszajn in V P?

Corollary
Let S be Baumgartner’s poset for specializing T with finite
conditions. Then S× P is a ccc poset which forces that T is a
special non-Lindelöf Aronszajn tree.

Corollary
If MAℵ1 holds, then there are no Lindelöf trees.



Other ways of adding subtrees?

Theorem (M.)
Let T be an infinitely branching ℵ1 tree. Suppose P is a poset, G is
P-generic over V and S ∈ V [G ] is a finitely branching subtree of
T . Suppose that P is either
▶ countably closed
▶ strongly proper for a stationary set of countable elementary

substructures of some (large) Hλ.
Then S ∈ V .



Thank you :)
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