Square compactness and dense linear orders

Pedro Marun

September 3, 2022

Preliminaries

All spaces under consideration are Hausdorff.

Definition

- 1. Given an infinite cardinal κ , a topological space is said to be κ -compact iff every open cover has a subcover of size $< \kappa$.
- 2. A cardinal κ is said to be λ -square compact iff for every topological space X of weight $\leq \lambda$, if X is κ -compact, then X^2 is κ -compact.
- 3. A cardinal *κ* is said to be *weakly square compact* iff it is *κ*-square compact.
- (Hajnal-Juhász, 1973) A cardinal κ is said to be square compact iff it is λ-square compact for every cardinal λ.

Theorem (Hajnal-Juhász, 1973)

If κ is weakly square compact (i.e. κ -square compact), then κ is regular.

Theorem (Hajnal-Juhász, 1973)

If κ is uncountable and $2^{\kappa}\mbox{-square compact, then }\kappa$ is weakly compact.

Theorem (folklore)

If κ is strongly compact, then it is square compact.

Question (Juhasz)

Does the previous theorem reverse?

Theorem (Buhagiar-Džamonja, 2020)

Let κ be an uncountable cardinal such that $\kappa = \kappa^{<\kappa}$. The following are equivalent:

- 1. κ is weakly compact.
- 2. κ is weakly square compact.

The goal of this talk is to show that the assumption $\kappa = \kappa^{<\kappa}$ is superfluous.

The Sorgenfrey construction

Recall the classical argument that Lindelöfness is not productive: endow \mathbb{R} with the Sorgenfrey topology, which is generated by all intervals [a, b), where $a, b \in \mathbb{R}$. This is obviously Hausdorff.

Claim

The Sorgenfrey topology is Lindelöf.

Proof. If $\mathcal{U} \subset \{[a, b) : a, b \in \mathbb{R}\}$ is a basic open cover, then $W = \bigcup\{(a, b) : [a, b) \in \mathcal{U}\}$ is Euclidean open, hence $W = \bigcup\{(a, b) : [a, b) \in \mathcal{U}_0\}$ for some countable $\mathcal{U}_0 \subset \mathcal{U}$. Argue that $\mathbb{R} \setminus W$ is countable: if $x \in \mathbb{R} \setminus W$, then $x \in [a_x, b_x)$ for some $[a_x, b_x) \in \mathcal{U}$, hence $x = a_x$. Pick $d_x \in \mathbb{Q}$ with $x < d_x < b_x$. If $x, y \in \mathbb{R} \setminus W, x < y$, then $x < d_x < b_x \le y < d_y$. In the square of the Sorgenfrey topology, the set $\{(x, -x) : x \in \mathbb{R}\}$ is closed, discrete, and has size 2^{\aleph_0} , hence $\mathbb{R} \times \mathbb{R}$ is non-Lindelöf.

A generalization

The previous argument can be extended to any infinite cardinal κ (instead of \aleph_1), as long as we have a dense linear order (dlo) X with $d(X) < \kappa = |X|$, where $d(X) = \min\{|D| : D \subset X \text{ dense}\}$ is the density of X.

Theorem

Let κ be an uncountable cardinal. If there exists a dlo X with $d(X) < \kappa = |X|$, then κ is not weakly square compact.

Question

Given κ uncountable, is there a dlo X with $d(X) < \kappa = |X|$?

The Three Cardinal Lemma

Theorem (M.)

Let κ be an uncountable cardinal. Suppose there exist cardinals μ and θ such that $\mu^{<\theta} = \mu < \kappa \leq \mu^{\theta}$. Then there is a dlo X with $d(X) < \kappa = |X|$.

Corollary (M.)

Successor cardinals are not weakly square compact.

Proof of Corollary.

Fix $\lambda \geq \omega$. Let $\theta := \min\{\nu : \lambda^{\nu} > \lambda\}$. By König's Lemma, $\theta \leq cf(\lambda)$, so $\lambda^{<\theta} = \lambda$ by minimality. Apply the theorem with $\kappa = \lambda^+$ and $\mu = \lambda$.

Corollary

Suppose κ is weakly square compact. Then κ is a strong limit. In particular, $\kappa^{<\kappa} = \kappa$.

Proof sketch.

Suppose κ is not a strong limit. Then the following makes sense:

$$heta:=\min\{
u:\exists\lambda(
u\leq\lambda<\kappa\leq\lambda^
u)\}$$

Let $\lambda < \kappa$ be least such that $\theta \leq \lambda < \kappa \leq \lambda^{\theta}$. Put $\mu := \lambda^{<\theta}$.

First, argue that θ is regular. Then, show that $\mu^{<\theta} = \mu < \kappa$ by splitting into the cases θ successor and θ limit, and then casing on the behaviour of $\alpha \mapsto \lambda^{\alpha}$ for $\alpha < \theta$.

We can now remove the assumption $\kappa^{<\kappa}=\kappa$ from the Buhagiar-Džamonja result:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

- 1. κ is weakly compact.
- 2. κ is κ -square compact.

Proof.

Both (1) and (2) separately imply $\kappa^{<\kappa} = \kappa$.

The Three Cardinal Lemma: proof sketch

Theorem

Let κ be uncountable. Suppose there exist cardinals μ and θ such that $\mu^{<\theta} = \mu < \kappa \leq \mu^{\theta}$. Then there is a dlo X with $d(X) < \kappa = |X|$.

Lemma 1

Given $\mu \ge \omega$ and any dlo (X, <), there exists a dlo $Y \supset X$ such that any non-empty interval in Y with endpoints from X contains μ many pairwise disjoint non-empty intervals. If $|X| \le \mu$, then we can find Y with $|Y| = \mu$.

Proof of Lemma 1.

Let $X = \{x_{\alpha} : \alpha < \delta\}$, for $\delta = |X|$. Define $\langle X_{\alpha} : \alpha \leq \delta \rangle$ as follows: $X_0 := X$ and $X_{\alpha} = \bigcup_{\xi < \alpha} X_{\xi}$ for limit α . Given X_{α} , let $S = (\mu^* \oplus \mu) \times \mathbb{Q}$ ordered lexicographically and put

$$X_{lpha+1} = \{x \in X_lpha : x \leq x_lpha\} \oplus \mathcal{S} \oplus \{x \in X_lpha : x_lpha < x\}.$$

Interlude

Definition

Let (P, <) be a strict partial order. Given cardinals κ, λ , a (κ, λ) -pregap in (P, <) is a pair (f, g) such that $f : \kappa \to P$ is strictly increasing, $g : \lambda \to P$ is strictly decreasing, and $f(\alpha) < g(\beta)$ for all $\alpha < \kappa$ and $\beta < \lambda$. We say that $p \in P$ fills the pregap if $f(\alpha) for all <math>\alpha < \kappa$ and $\beta < \lambda$.

A gap is a pregap which is not filled by any element of P.

Lemma 2 Let (X, <) be a dlo and (f, g) a gap in X. Then there is a dlo $Y \supset X$ with |Y| = |X| in which (f, g) is filled.

Proof of Lemma 2.

Use the Compactness Theorem.

Lemma 3

Suppose μ and θ are infinite cardinals such that $\mu^{<\theta} = \mu$. Let (X, <) be a dlo with $|X| = \mu$. Then there is some dlo $Z \supset X$ such that $|Z| = \mu$ and every $(<\theta, <\theta)$ -pregap in Z is filled.

Proof of lemma 3.

Enumerate the (< θ , < θ)-gaps (there's μ -many) and iterate Lemma 2.

Proof of the Three Cardinal Lemma.

- Build a ⊂-increasing sequence (X_α : α ≤ μ) of dlo's of size μ as follows: X₀ has every interval contain μ-many pairwise disjoint intervals. At limits, take unions. At successors, use Lemma 1 to enlarge X_α, then apply Lemma 3 to fill all relevant gaps of the enlargement, call the output X_{α+1}.
- 2. In X_{μ} , find a coherent system of non-empty closed intervals $\langle I_s : s \in {}^{<\theta}\mu \rangle$, i.e. $s \subset t \to I_s \supset I_t$ and $s \perp t \to I_s \cap I_t = \emptyset$. If Y is the order completion of X_{μ} , argue that $|Y| \ge \mu^{\theta} > \kappa$.
- 3. Choose $X \prec Y$ with $X_{\mu} \subset X$ and $|X| = \kappa$. Since X_{μ} is dense in Y, $d(X) \leq |X_{\mu}| = \mu < \kappa$.

Thank you :)

References

- David Buhagiar and Mirna Džamonja. "Square Compactness and the Filter Extension Property". In: Fundamenta Mathematicae 252.3 (2021).
- W. Wistar Comfort and Stylianos Negrepontis. The Theory of *Ultrafilters*. Springer Berlin Heidelberg, 1974.
- B. A. Davey and H. A. Priestley. *Introduction to Lattices and Order*. 2nd ed. Cambridge University Press, 2002.
- A. Hajnal and I. Juhász. "On Square-Compact Cardinals". In: *Periodica Mathematica Hungarica* 3.3-4 (1973).
- Emil Jeřábek. Possible Cardinality and Weight of an Ordered Field. URL:https://mathoverflow.net/q/188628 (version: 2017-04-13). 2017.