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Preliminaries

All spaces under consideration are Hausdorff.

Definition
1. Given an infinite cardinal κ, a topological space is said to be
κ-compact iff every open cover has a subcover of size < κ.

2. A cardinal κ is said to be λ-square compact iff for every
topological space X of weight ≤ λ, if X is κ-compact, then
X 2 is κ-compact.

3. A cardinal κ is said to be weakly square compact iff it is
κ-square compact.

4. (Hajnal-Juhász, 1973) A cardinal κ is said to be square
compact iff it is λ-square compact for every cardinal λ.



Theorem (Hajnal-Juhász, 1973)
If κ is weakly square compact (i.e. κ-square compact), then κ is
regular.

Theorem (Hajnal-Juhász, 1973)
If κ is uncountable and 2κ-square compact, then κ is weakly
compact.

Theorem (folklore)
If κ is strongly compact, then it is square compact.

Question (Juhasz)
Does the previous theorem reverse?



Theorem (Buhagiar-Džamonja, 2020)
Let κ be an uncountable cardinal such that κ = κ<κ. The following
are equivalent:
1. κ is weakly compact.
2. κ is weakly square compact.

The goal of this talk is to show that the assumption κ = κ<κ is
superfluous.



The Sorgenfrey construction

Recall the classical argument that Lindelöfness is not productive:
endow R with the Sorgenfrey topology, which is generated by all
intervals [a, b), where a, b ∈ R. This is obviously Hausdorff.

Claim
The Sorgenfrey topology is Lindelöf.

Proof.
If U ⊂ {[a, b) : a, b ∈ R} is a basic open cover, then
W =

⋃
{(a, b) : [a, b) ∈ U} is Euclidean open, hence

W =
⋃
{(a, b) : [a, b) ∈ U0} for some countable U0 ⊂ U . Argue

that R \W is countable: if x ∈ R \W , then x ∈ [ax , bx) for some
[ax , bx) ∈ U , hence x = ax . Pick dx ∈ Q with x < dx < bx . If
x , y ∈ R \W , x < y , then x < dx < bx ≤ y < dy .
In the square of the Sorgenfrey topology, the set {(x ,−x) : x ∈ R}
is closed, discrete, and has size 2ℵ0 , hence R× R is non-Lindelöf.



A generalization

The previous argument can be extended to any infinite cardinal κ
(instead of ℵ1), as long as we have a dense linear order (dlo) X
with d(X ) < κ = |X |, where d(X ) = min{|D| : D ⊂ X dense} is
the density of X .

Theorem
Let κ be an uncountable cardinal. If there exists a dlo X with
d(X ) < κ = |X |, then κ is not weakly square compact.

Question
Given κ uncountable, is there a dlo X with d(X ) < κ = |X |?



The Three Cardinal Lemma

Theorem (M.)
Let κ be an uncountable cardinal. Suppose there exist cardinals µ
and θ such that µ<θ = µ < κ ≤ µθ. Then there is a dlo X with
d(X ) < κ = |X |.

Corollary (M.)
Successor cardinals are not weakly square compact.

Proof of Corollary.
Fix λ ≥ ω. Let θ := min{ν : λν > λ}. By König’s Lemma,
θ ≤ cf(λ), so λ<θ = λ by minimality. Apply the theorem with
κ = λ+ and µ = λ.



Corollary
Suppose κ is weakly square compact. Then κ is a strong limit. In
particular, κ<κ = κ.

Proof sketch.
Suppose κ is not a strong limit. Then the following makes sense:

θ := min{ν : ∃λ(ν ≤ λ < κ ≤ λν)}

Let λ < κ be least such that θ ≤ λ < κ ≤ λθ. Put µ := λ<θ.

First, argue that θ is regular. Then, show that µ<θ = µ < κ by
splitting into the cases θ successor and θ limit, and then casing on
the behaviour of α 7→ λα for α < θ.



We can now remove the assumption κ<κ = κ from the
Buhagiar-Džamonja result:

Theorem
Let κ be an uncountable cardinal. The following are equivalent:
1. κ is weakly compact.
2. κ is κ-square compact.

Proof.
Both (1) and (2) separately imply κ<κ = κ.



The Three Cardinal Lemma: proof sketch

Theorem
Let κ be uncountable. Suppose there exist cardinals µ and θ such
that µ<θ = µ < κ ≤ µθ. Then there is a dlo X with
d(X ) < κ = |X |.

Lemma 1
Given µ ≥ ω and any dlo (X , <), there exists a dlo Y ⊃ X such
that any non-empty interval in Y with endpoints from X contains
µ many pairwise disjoint non-empty intervals. If |X | ≤ µ, then we
can find Y with |Y | = µ.

Proof of Lemma 1.
Let X = {xα : α < δ}, for δ = |X |. Define 〈Xα : α ≤ δ〉 as follows:
X0 := X and Xα =

⋃
ξ<α Xξ for limit α. Given Xα, let

S = (µ∗ ⊕ µ)×Q ordered lexicographically and put

Xα+1 = {x ∈ Xα : x ≤ xα} ⊕ S ⊕ {x ∈ Xα : xα < x}.



Interlude

Definition
Let (P, <) be a strict partial order. Given cardinals κ, λ, a
(κ, λ)-pregap in (P, <) is a pair (f , g) such that f : κ→ P is
strictly increasing, g : λ→ P is strictly decreasing, and
f (α) < g(β) for all α < κ and β < λ. We say that p ∈ P fills the
pregap if f (α) < p < g(β) for all α < κ and β < λ.

A gap is a pregap which is not filled by any element of P .



Lemma 2
Let (X , <) be a dlo and (f , g) a gap in X . Then there is a dlo
Y ⊃ X with |Y | = |X | in which (f , g) is filled.

Proof of Lemma 2.
Use the Compactness Theorem.

Lemma 3
Suppose µ and θ are infinite cardinals such that µ<θ = µ. Let
(X , <) be a dlo with |X | = µ. Then there is some dlo Z ⊃ X such
that |Z | = µ and every (< θ,< θ)-pregap in Z is filled.

Proof of lemma 3.
Enumerate the (< θ,< θ)-gaps (there’s µ-many) and iterate
Lemma 2.



Proof of the Three Cardinal Lemma.
1. Build a ⊂-increasing sequence 〈Xα : α ≤ µ〉 of dlo’s of size µ

as follows: X0 has every interval contain µ-many pairwise
disjoint intervals. At limits, take unions. At successors, use
Lemma 1 to enlarge Xα, then apply Lemma 3 to fill all
relevant gaps of the enlargement, call the output Xα+1.

2. In Xµ, find a coherent system of non-empty closed intervals
〈Is : s ∈ <θµ〉, i.e. s ⊂ t → Is ⊃ It and s ⊥ t → Is ∩ It = ∅. If
Y is the order completion of Xµ, argue that |Y | ≥ µθ > κ.

3. Choose X ≺ Y with Xµ ⊂ X and |X | = κ. Since Xµ is dense
in Y , d(X ) ≤ |Xµ| = µ < κ.



Thank you :)
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