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1 Definition. Let (X, 7) be a topological space. We define the following global cardinal functions:
ww The weight of X, w(X) := min{|B| : B is a base for X}.
= The density of X, d(X) := min{|D|: D C X is dense }.
= The spread of X, s(X) :=sup{|S|: S C X is discrete}.
i The extent of X, e(X) :=sup{|C|: C C X is closed and discrete}.
i The Lindel6f degree of X,

L(X) := min {k : every open cover of X has a subcover of size <k}

w The network weight of X, nw(X) = min{|N]| : N is a network for X}, where a network
is a set N/ C P(X) such that whenever z € U € 7, there is some N € N withz € N CU.

We also have the following local functions, defined for p € X,

w (X, p) = min{|V| : V is a local base at p}, where V is a local base at p iff V C 7 and
whenever p € U € 7, then p € V C U for some V € V. In other words, V is a base of open
neighbourhoods of p.

e (X, p) = min{|V| : V is a pseudo base at p}, where V is a pseudo base at p iff V C 7
and V = {p}.
w t(X,p) =min{s: VY C X(x €Y = JA € [Y]="(z € A))}.
These in turn give rise to global functions:
i The character of X, x(X) = sup{x(X,p) :p € X}.
= The pseudocharacter of X, ¢(X) = sup{¢(X,p) : p € X}.
= The tightness of X, ¢(X) = sup{¢t(X,p) : p € X}. 4

An easy result:
2 Lemma. Let X be a space. Then e(X) < L(X) < w(X). If X is Ty, then |X| < 2¢(X),

Proof. Fix E C X closed and discrete with |E| = e(X). Then {{z} : x € E}U{X \ E} is an open
cover of X with no subcover of size < e(X), hence e(X) < L(X). For the second inequality, fix a
base B with |B| = w(X). If U is an open cover of X, now pick ¥V C B such that every member of
V is a subset of a member of U (i.e. V refines ) and JV = X.

Finally, if X is Ty and B is as above, x +— (xy(z) : U € B) is an injection X — 52. |



3 Lemma. Consider the discrete topology on an infinite cardinal k. PutY =*2. Then d(kY) = x
(in the product topology).

Proof. Consider the product topology on Y, so that w(Y) = k. Let B be the usual basis for
Y. Let D be the set of p € k¥ defined as follows: p € D iff there is some finite non-empty
o/ C B consisting of pairwise disjoint sets such that p is constant on each member of &/ and

plY \U#] = {0}.

Claim. D is dense in k™ .

Proof of claim. Fix a basic open set U C kY, so that there exist F' € [Y]<“ and sets V,, C & for
y € F so that U:HerUj,where U,=V,ifye FandU,=rifyec Y\ F.

Since Y is Hausdorff, we can find, for each y € F, B, € B such that y € B, and the B, N B, = {)
whenever y # z. Choose, for each y € F, an ordinal o, € V},. Define p € &Y by

]y if y € By,
p(y) : {0 otherwise.

By definition, p € D. Also, if y € F, then p(y) =, € V};, s0 pe U.

To complete the proof, simply note that |D| = k. |

4 Theorem (Hewitt-Marczewski-Pondiczery). Let k be infinite, J a set of size < 2%, and X;
spaces with d(X;) < k for all j € J. Then d(]_[j X;) < k. In particular, the product of continuum
many separable spaces is separable.

Proof. Fix, for each j € J, D; C X; dense with |D;| = d(X,;) < k. Choose surjections
fj + & — Dj, which induce a continuous map f =[], f; : kY — [I; D;. Since f is surjective and
continuous, the previous lemma gives d([]; D;) < k. But [[; D; is obviously dense in []; X,
and we are done.

5 Jones’ Lemma. Let X be a Ty space and E a closed discrete subset of X. Then 24(X) < ol Bl

Proof. Fix E closed and discerete and D C X dense with |D| = d(X). Given A C E, the
characteristic function of A as computed in E is continuous (because E is discrete), hence extends
to some f4 € C(X,]0,1]) by the Tietze extension theorem (using that F is closed). Note that,
if A+ B, then fa # fg, hence fa|D # fg|D. This gives an injection P(E) — P[0,1]. The
codomain has size 24X) | which completes the proof. |

By the same argument at the end of the last proof:

6 Lemma. Let X be a space. Then |C(X,R)| < 24X),

The seemingly strange concept of network weight is useful for computing the weight of compact
spaces, via the following surprising result:

7 Theorem (Arhangel’skii). Let (X, 7) be a compact Hausdorff space. Then nw(X) = w(X).



Proof. Every base is a network, so w(X) > nw(X). For the reverse implication, fix a network N
with V] = nw(X). Define a partial function ® : N2 — 72 as follows: given (S,T) € N'? with
SNT = (), if there exist open sets U and V with U DS, V DT, and UNV =, then ®(S,T)
chooses one such pair (U, V). Let & = dom(ran(®)), so that o is the collection of all open sets
which occur as the first (or second, by symmetry) coordinate of a value of ®. Let B be the set of
finite intersections of members of <7.

Claim. B is a basis for X.

Proof of claim. Fix x € U € 7. Given y € X \ U, choose U,V € 7 with x € Uy, y € V,

and Uy, NV, = (. Since N is a network, we can choose S,,T, € N such that z € S, C U,

and y € T, C V,. This shows that ® is defined at (Sy,T), say ®(S,,T) = (U;,Vyl), so that

U,V €.

Since X is compact and U is open, X \ U is compact. Also, X \ U C UyGX\U Vyl, so we can find

Yo, - -+ Yn—1 such that X\ U C {J,_,, V,.. Since U; NV, = 0 by definition of ®, we have that
ze (U, € X\V, CU.

i<n i<n
1
As ;2 U, € B, we are done.

Obviously, |B| = || < |N| = nw(X), so w(X) < nw(X). [ |

8 Weight Addition Theorem (Arhangel’skii). Let be (X,7) a compact Hausdorff space.
Suppose that X = J, ., Xa, where w(X,) < & for every o < k. Then w(X) < k.

Proof. Fix, for each a < k, a base B, for X, with |B,| < k. Put N' = {J,., Ba. Suppose
zeUer. Fix a < k with z € X,. Choose B € B, such that x € B C X, NU. Obviously,
x € B C U. This shows that N is a network for X, and so w(X) = nw(X) < |N| < k. ]

9 Remark. To see that compactness is necessary, let X be a countable T; space with uncountable
weight. Examples of such monstrosities include the Appert space and the Arens-Fort space, see
[8], pages 117 and 54 respectively. Now write X as a countable union of finite sets and use that a
finite 77 space has finite weight. a

The following corollary is the first step towards some results about Stone-Cech compactifica-
tions.

10 Corollary. Let X and Y be spaces, with Y compact Hausdorff. Suppose that there exists a
continuous surjection f: X =Y. Then w(Y) < w(X).

Proof. Let B be a base for X with w(X) = |B|. Then {f[B]: B € B} is a network for Y of size
at most w(X). [ |

11 Lemma. If X is a T3y space, then w(BX) < 24X,

Proof. Construe BX as a subspace of [0, 1](5[01) (see [3] for details). This latter space can be
viewed as a subspace of [0, 1]2d(X) (by lemma 6), and this has weight 2¢(X). |



12 Corollary. w(fw) = 2%°.

Proof. The (<) inequality follows from the previous lemma. To see the reverse inequality, first
note that nw(Bw) = w(Bw) by Arhangel’skii’s theorem, so it suffices to show nw(Bw) > 2%,

By the Hewitt-Marczweski-Pondiczery theorem, I7” 2 I is separable. Fix D C I’ dense and
countable and a bijection f : w — D. Then f : w — I! is continuous, so it extends to some
continuous Bf : fw — I by the compactness of I’ and general abstract nonsense. By continuity,
the range of Sf is compact, hence closed (because fw is Hausdorff). But D C ran(8f), so
ran(Bf) = fw and so nw(fw) < nw(It) = w(It) = 2%, [ |

We remark that, since 8f : fw — I is surjective, the proof also gives that |fw| > 22" This
argument is independent of the ultrafilter argument using independent sets.

The next theorem answers a question of Alexandroff and Urysohn from 1923: if a space is
Hausdorff, first countable, and compact, must it be of size at most continuum?

13 Theorem (Arhangel’skii, 1969). Let X be a Hausdorff space with L(X) = t(X) = (X)) = R.
Then | X| < Ng.

In fact, Arhangelsk’ii proved a stronger result, namely that |X| < 2LXIX(X) whenever X is
T1, but we will prove the version above to ilustrate the use of model theoretic methods. The
interested reader can consult page 19 of [4].

Our proof follows [1]. While elementary submodels abstract Pol’s closure proof, I do not know
who first used them in this context.

Proof. Fix B a base for X. Let A be a large enough regular cardinal so that (X, B) € Hy. Choose
M < Hy so that “M C M, (X,B) € M, and |M| = 2%. The strategy of the proof is to show that
X N M = X, which will in particular establish the desired cardinality bound. Suppose therefore
that X N M # X,and fix z € X \ M.

Claim 1. For everyy € X N M there is some Uy € BN M such thaty € Uy and z € U,.

Proof of claim 1. Fix y € X N M. Since X has countable pseudcharacter, the elementarity of
M gives U € M N [B]* such that U = {y}. Choose U, € U such that z ¢ U,. Since U € M is
countable, Y C M by elementarity, so U, € M. =

The next step is to show that X N M is closed in X. Fix x € X N M. Since X has countable
tightness, there is some countable Y C X NM such that z € Y. Use the countable pseudocharacter
to find (V, : n < w) € “B such that {z} =, V. Now fix n € w.

Claim 2. There is a family (Vi m : n,m € w) such that X\V,, € U,,co, Vaom and z & U, ,c., Vam-

Proof of claim 2. Fix y € X \ 'V, so that « # y and we can find V,,, W, € B such that
x e Wy,y eV, and V, N W, = 0. Since V,, is open and X is Lindel6f, X \ V,, is Lindel6f, so we
can find {ynm : m € w} € X\ V,, such that X\ V,, € ,,c, Vi Put V,, ==V, .. This
works. -

n,m "

Let Voo =Y NV .
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Claim 3. Y\ {z} =U Yom

nmew - N,m:
Proof of claim 3. C) Let y € Y \ {x}. Choose n € w such that y € X \ V,, and then choose
m € w with y € V,, ,,. Since V,, ,,, is open and y € Y, we infer that y € Y NV, 1, = Y, ;. This is

a general topology fact: if A C X and V is open, then VN A C V N A. Indeed, if pevn A and
W is an open neighbourhood of p, then sois VN W,s0 AN(VNW) # 0 by p € A.

D) Fixn,m e wandy € Y, ,,. Sincex € V,, »,, we have y # x. Also, Y;, n, C Y,soy € Y\{z}. -

Now, Y C X N M is countable, so Y € M because M is closed under countable sequences, hence
Y € M by elementarity. By the same logic, Y, ,, € M and Y, ,,, € M for every n,m € w. Using
closure under w-sequences once more, we see that (Y, ., : n,m € w) € M. By elementarity and
claim 3, Y \ {z} € M. But z € Y € M, so * € M by elementarity once more. Since x € X N M
was arbitrary, X N M is closed.

Since X is Lindelof and X N M is closed, we infer that X N M is also Lindeldf (in the subspace
topology). Put U = {U, : y € X N M}, where the U, are as in claim 1. Then U is an open
cover of X N M, hence admits an countable subcover Uy. Since Y C M and M is closed under
w-sequences, we have Uy € M. The fact that Uy = Uy N M covers X N M says that the statement

Yy e XNMIU €Uy N M(y € U)

is true. But this means exactly that M | (Uy covers X), so Uy covers X by elementarity (and
absoluteness). This is a contradiction, because z ¢ |JUy (by claim 1) yet z € X. [ |
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