An inadequate course in cardinal functions

Pedro E. Marun

- **1 Definition.** Let (X, τ) be a topological space. We define the following global cardinal functions:
 - The weight of $X, w(X) := \min\{|\mathcal{B}| : \mathcal{B} \text{ is a base for } X\}.$
 - The **density** of X, $d(X) := \min\{|D| : D \subseteq X \text{ is dense }\}.$
 - The spread of $X, s(X) := \sup\{|S| : S \subseteq X \text{ is discrete}\}.$
 - The extent of X, $e(X) := \sup\{|C| : C \subseteq X \text{ is closed and discrete}\}.$
 - IF The Lindelöf degree of X,

 $L(X) := \min \{ \kappa : \text{every open cover of } X \text{ has a subcover of size } \leq \kappa \}$

■ The **network weight** of X, $nw(X) = \min\{|\mathcal{N}| : \mathcal{N} \text{ is a network for } X\}$, where a **network** is a set $\mathcal{N} \subseteq \mathcal{P}(X)$ such that whenever $x \in U \in \tau$, there is some $N \in \mathcal{N}$ with $x \in N \subseteq U$.

We also have the following local functions, defined for $p \in X$,

- $\psi(X, p) = \min\{|\mathcal{V}| : \mathcal{V} \text{ is a local base at } p\}$, where \mathcal{V} is a **local base** at p iff $\mathcal{V} \subseteq \tau$ and whenever $p \in U \in \tau$, then $p \in V \subseteq U$ for some $V \in \mathcal{V}$. In other words, \mathcal{V} is a base of open neighbourhoods of p.
- $\psi(X,p) = \min\{|\mathcal{V}| : \mathcal{V} \text{ is a pseudo base at } p\}$, where \mathcal{V} is a **pseudo base** at p iff $\mathcal{V} \subseteq \tau$ and $\bigcap \mathcal{V} = \{p\}$.
- ${\rm Im} t(X,p) = \min\{\kappa: \forall Y \subseteq X(x \in \overline{Y} \to \exists A \in [Y]^{\leq \kappa} (x \in \overline{A}))\}.$

These in turn give rise to global functions:

- The character of X, $\chi(X) = \sup\{\chi(X, p) : p \in X\}.$
- The **pseudocharacter** of X, $\psi(X) = \sup\{\psi(X, p) : p \in X\}$.
- The **tightness** of X, $t(X) = \sup\{t(X, p) : p \in X\}$.

An easy result:

2 Lemma. Let X be a space. Then $e(X) \leq L(X) \leq w(X)$. If X is T_0 , then $|X| \leq 2^{w(X)}$.

Proof. Fix $E \subseteq X$ closed and discrete with |E| = e(X). Then $\{\{x\} : x \in E\} \cup \{X \setminus E\}$ is an open cover of X with no subcover of size $\langle e(X) \rangle$, hence $e(X) \leq L(X)$. For the second inequality, fix a base \mathcal{B} with $|\mathcal{B}| = w(X)$. If \mathcal{U} is an open cover of X, now pick $\mathcal{V} \subseteq \mathcal{B}$ such that every member of \mathcal{V} is a subset of a member of \mathcal{U} (i.e. \mathcal{V} refines \mathcal{U}) and $\bigcup \mathcal{V} = X$.

Finally, if X is T_0 and \mathcal{B} is as above, $x \mapsto \langle \chi_U(x) : U \in \mathcal{B} \rangle$ is an injection $X \to {}^{\mathcal{B}}2$.

3 Lemma. Consider the discrete topology on an infinite cardinal κ . Put $Y = \kappa^2$. Then $d(\kappa^Y) = \kappa$ (in the product topology).

Proof. Consider the product topology on Y, so that $w(Y) = \kappa$. Let \mathcal{B} be the usual basis for Y. Let D be the set of $p \in \kappa^Y$ defined as follows: $p \in D$ iff there is some finite non-empty $\mathscr{A} \subseteq \mathcal{B}$ consisting of pairwise disjoint sets such that p is constant on each member of \mathscr{A} and $p[Y \setminus \bigcup \mathscr{A}] = \{0\}.$

Claim. D is dense in κ^Y .

Proof of claim. Fix a basic open set $U \subseteq \kappa^Y$, so that there exist $F \in [Y]^{<\omega}$ and sets $V_y \subseteq \kappa$ for $y \in F$ so that $U = \prod_{y \in Y} U_j$, where $U_y = V_y$ if $y \in F$ and $U_y = \kappa$ if $y \in Y \setminus F$.

Since Y is Hausdorff, we can find, for each $y \in F$, $B_y \in \mathcal{B}$ such that $y \in B_y$ and the $B_y \cap B_z = \emptyset$ whenever $y \neq z$. Choose, for each $y \in F$, an ordinal $\alpha_y \in V_y$. Define $p \in \kappa^Y$ by

$$p(y) := \begin{cases} \alpha_y & \text{if } y \in B_y, \\ 0 & \text{otherwise.} \end{cases}$$

By definition, $p \in D$. Also, if $y \in F$, then $p(y) = \alpha_y \in V_y$, so $p \in U$.

To complete the proof, simply note that $|D| = \kappa$.

4 Theorem (Hewitt-Marczewski-Pondiczery). Let κ be infinite, J a set of size $\leq 2^{\kappa}$, and X_j spaces with $d(X_j) \leq \kappa$ for all $j \in J$. Then $d(\prod_j X_j) \leq \kappa$. In particular, the product of continuum many separable spaces is separable.

Proof. Fix, for each $j \in J$, $D_j \subseteq X_j$ dense with $|D_j| = d(X_j) \leq \kappa$. Choose surjections $f_j : \kappa \to D_j$, which induce a continuous map $f = \prod_j f_j : \kappa^Y \to \prod_j D_j$. Since f is surjective and continuous, the previous lemma gives $d(\prod_j D_j) \leq \kappa$. But $\prod_j D_j$ is obviously dense in $\prod_j X_j$, and we are done.

5 Jones' Lemma. Let X be a T_4 space and E a closed discrete subset of X. Then $2^{d(X)} \leq 2^{|E|}$.

Proof. Fix E closed and discerete and $D \subseteq X$ dense with |D| = d(X). Given $A \subseteq E$, the characteristic function of A as computed in E is continuous (because E is discrete), hence extends to some $f_A \in C(X, [0, 1])$ by the Tietze extension theorem (using that E is closed). Note that, if $A \neq B$, then $f_A \neq f_B$, hence $f_A \upharpoonright D \neq f_B \upharpoonright D$. This gives an injection $\mathcal{P}(E) \to {}^D[0, 1]$. The codomain has size $2^{d(X)}$, which completes the proof.

By the same argument at the end of the last proof:

6 Lemma. Let X be a space. Then $|C(X,\mathbb{R})| \leq 2^{d(X)}$.

The seemingly strange concept of network weight is useful for computing the weight of compact spaces, via the following surprising result:

7 Theorem (Arhangel'skii). Let (X, τ) be a compact Hausdorff space. Then nw(X) = w(X).

Proof. Every base is a network, so $w(X) \ge nw(X)$. For the reverse implication, fix a network \mathcal{N} with $|\mathcal{N}| = nw(X)$. Define a partial function $\Phi : \mathcal{N}^2 \rightharpoonup \tau^2$ as follows: given $(S,T) \in \mathcal{N}^2$ with $S \cap T = \emptyset$, if there exist open sets U and V with $U \supseteq S$, $V \supseteq T$, and $U \cap V = \emptyset$, then $\Phi(S,T)$ chooses one such pair (U,V). Let $\mathscr{A} = \text{dom}(\text{ran}(\Phi))$, so that \mathscr{A} is the collection of all open sets which occur as the first (or second, by symmetry) coordinate of a value of Φ . Let \mathcal{B} be the set of finite intersections of members of \mathscr{A} .

Claim. \mathcal{B} is a basis for X.

Proof of claim. Fix $x \in U \in \tau$. Given $y \in X \setminus U$, choose $U_y, V_y \in \tau$ with $x \in U_y, y \in V_y$, and $U_y \cap V_y = \emptyset$. Since \mathcal{N} is a network, we can choose $S_y, T_y \in \mathcal{N}$ such that $x \in S_y \subseteq U_y$ and $y \in T_y \subseteq V_y$. This shows that Φ is defined at (S_y, T_y) , say $\Phi(S_y, T_y) = (U_y^1, V_y^1)$, so that $U_y^1, V_y^1 \in \mathscr{A}$.

Since X is compact and U is open, $X \setminus U$ is compact. Also, $X \setminus U \subseteq \bigcup_{y \in X \setminus U} V_y^1$, so we can find y_0, \ldots, y_{n-1} such that $X \setminus U \subseteq \bigcup_{i < n} V_{y_i}^1$. Since $U_y^1 \cap V_y^1 = \emptyset$ by definition of Φ , we have that

$$x \in \bigcap_{i < n} U_{y_i}^1 \subseteq \bigcap_{i < n} X \setminus V_{y_i}^1 \subseteq U.$$

As $\bigcap_{i < n} U_{y_i}^1 \in \mathcal{B}$, we are done.

Obviously, $|\mathcal{B}| = |\mathscr{A}| \le |\mathcal{N}| = nw(X)$, so $w(X) \le nw(X)$.

8 Weight Addition Theorem (Arhangel'skii). Let be (X, τ) a compact Hausdorff space. Suppose that $X = \bigcup_{\alpha < \kappa} X_{\alpha}$, where $w(X_{\alpha}) \leq \kappa$ for every $\alpha < \kappa$. Then $w(X) \leq \kappa$.

Proof. Fix, for each $\alpha < \kappa$, a base \mathcal{B}_{α} for X_{α} with $|\mathcal{B}_{\alpha}| \leq \kappa$. Put $\mathcal{N} = \bigcup_{\alpha < \kappa} \mathcal{B}_{\alpha}$. Suppose $x \in U \in \tau$. Fix $\alpha < \kappa$ with $x \in X_{\alpha}$. Choose $B \in \mathcal{B}_{\alpha}$ such that $x \in B \subseteq X_{\alpha} \cap U$. Obviously, $x \in B \subseteq U$. This shows that \mathcal{N} is a network for X, and so $w(X) = nw(X) \leq |\mathcal{N}| \leq \kappa$.

9 Remark. To see that compactness is necessary, let X be a countable T_1 space with uncountable weight. Examples of such monstrosities include the Appert space and the Arens-Fort space, see [8], pages 117 and 54 respectively. Now write X as a countable union of finite sets and use that a finite T_1 space has finite weight.

The following corollary is the first step towards some results about Stone-Čech compactifications.

10 Corollary. Let X and Y be spaces, with Y compact Hausdorff. Suppose that there exists a continuous surjection $f: X \to Y$. Then $w(Y) \leq w(X)$.

Proof. Let \mathcal{B} be a base for X with $w(X) = |\mathcal{B}|$. Then $\{f[B] : B \in \mathcal{B}\}$ is a network for Y of size at most w(X).

11 Lemma. If X is a $T_{3\frac{1}{2}}$ space, then $w(\beta X) \leq 2^{d(X)}$.

Proof. Construe βX as a subspace of $[0,1]^{C(X,[0,1])}$ (see [3] for details). This latter space can be viewed as a subspace of $[0,1]^{2^{d(X)}}$ (by lemma 6), and this has weight $2^{d(X)}$.

Η

12 Corollary. $w(\beta \omega) = 2^{\aleph_0}$.

Proof. The (\leq) inequality follows from the previous lemma. To see the reverse inequality, first note that $nw(\beta\omega) = w(\beta\omega)$ by Arhangel'skii's theorem, so it suffices to show $nw(\beta\omega) \geq 2^{\aleph_0}$.

By the Hewitt-Marczweski-Pondiczery theorem, $I^{I^{\omega}} \cong I^{I}$ is separable. Fix $D \subseteq I^{I}$ dense and countable and a bijection $f: \omega \to D$. Then $f: \omega \to I^{I}$ is continuous, so it extends to some continuous $\beta f: \beta \omega \to I^{I}$ by the compactness of I^{I} and general abstract nonsense. By continuity, the range of βf is compact, hence closed (because $\beta \omega$ is Hausdorff). But $D \subseteq \operatorname{ran}(\beta f)$, so $\operatorname{ran}(\beta f) = \beta \omega$ and so $nw(\beta \omega) \leq nw(I^{I}) = w(I^{I}) = 2^{\aleph_{0}}$.

We remark that, since $\beta f : \beta \omega \to I^I$ is surjective, the proof also gives that $|\beta \omega| \ge 2^{2^{\aleph_0}}$. This argument is independent of the ultrafilter argument using independent sets.

The next theorem answers a question of Alexandroff and Urysohn from 1923: if a space is Hausdorff, first countable, and compact, must it be of size at most continuum?

13 Theorem (Arhangel'skii, 1969). Let X be a Hausdorff space with $L(X) = t(X) = \psi(X) = \aleph_0$. Then $|X| \leq \aleph_0$.

In fact, Arhangelsk'ii proved a stronger result, namely that $|X| \leq 2^{L(X)\chi(X)}$ whenever X is T_1 , but we will prove the version above to ilustrate the use of model theoretic methods. The interested reader can consult page 19 of [4].

Our proof follows [1]. While elementary submodels abstract Pol's closure proof, I do not know who first used them in this context.

Proof. Fix \mathcal{B} a base for X. Let λ be a large enough regular cardinal so that $(X, \mathcal{B}) \in H_{\lambda}$. Choose $M \prec H_{\lambda}$ so that ${}^{\omega}M \subseteq M$, $(X, \mathcal{B}) \in M$, and $|M| = 2^{\aleph_0}$. The strategy of the proof is to show that $X \cap M = X$, which will in particular establish the desired cardinality bound. Suppose therefore that $X \cap M \neq X$, and fix $z \in X \setminus M$.

Claim 1. For every $y \in X \cap M$ there is some $U_y \in \mathcal{B} \cap M$ such that $y \in U_y$ and $z \notin U_y$.

Proof of claim 1. Fix $y \in X \cap M$. Since X has countable pseudcharacter, the elementarity of M gives $\mathcal{U} \in M \cap [\mathcal{B}]^{\omega}$ such that $\bigcap \mathcal{U} = \{y\}$. Choose $U_y \in \mathcal{U}$ such that $z \notin U_y$. Since $\mathcal{U} \in M$ is countable, $\mathcal{U} \subseteq M$ by elementarity, so $U_y \in M$.

The next step is to show that $X \cap M$ is closed in X. Fix $x \in \overline{X \cap M}$. Since X has countable tightness, there is some countable $Y \subseteq X \cap M$ such that $x \in \overline{Y}$. Use the countable pseudocharacter to find $\langle V_n : n < \omega \rangle \in {}^{\omega}\mathcal{B}$ such that $\{x\} = \bigcap_n V_n$. Now fix $n \in \omega$.

Claim 2. There is a family $\langle V_{n,m} : n, m \in \omega \rangle$ such that $X \setminus V_n \subseteq \bigcup_{m \in \omega} V_{n,m}$ and $x \notin \bigcup_{m \in \omega} \overline{V_{n,m}}$.

Proof of claim 2. Fix $y \in X \setminus V_n$, so that $x \neq y$ and we can find $V_y, W_y \in \mathcal{B}$ such that $x \in W_y, y \in V_y$, and $V_y \cap W_y = \emptyset$. Since V_n is open and X is Lindelöf, $X \setminus V_n$ is Lindelöf, so we can find $\{y_{n,m} : m \in \omega\} \subseteq X \setminus V_n$ such that $X \setminus V_n \subseteq \bigcup_{m \in \omega} V_{y_{n,m}}$. Put $V_{n,m} := V_{y_{n,m}}$. This works.

Let $Y_{n,m} := Y \cap V_{n,m}$.

Claim 3. $\overline{Y} \setminus \{x\} = \bigcup_{n,m \in \omega} \overline{Y_{n,m}}.$

Proof of claim 3. \subseteq) Let $y \in \overline{Y} \setminus \{x\}$. Choose $n \in \omega$ such that $y \in X \setminus V_n$, and then choose $m \in \omega$ with $y \in V_{n,m}$. Since $V_{n,m}$ is open and $y \in \overline{Y}$, we infer that $y \in \overline{Y} \cap V_{n,m} = \overline{Y_{n,m}}$. This is a general topology fact: if $A \subseteq X$ and V is open, then $V \cap \overline{A} \subseteq \overline{V \cap A}$. Indeed, if $p \in V \cap \overline{A}$ and W is an open neighbourhood of p, then so is $V \cap W$, so $A \cap (V \cap W) \neq \emptyset$ by $p \in \overline{A}$.

 \supseteq) Fix $n, m \in \omega$ and $y \in \overline{Y_{n,m}}$. Since $x \notin \overline{V_{n,m}}$, we have $y \neq x$. Also, $\overline{Y_{n,m}} \subseteq \overline{Y}$, so $y \in Y \setminus \{x\}$. \dashv

Now, $Y \subseteq X \cap M$ is countable, so $Y \in M$ because M is closed under countable sequences, hence $\overline{Y} \in M$ by elementarity. By the same logic, $Y_{n,m} \in M$ and $\overline{Y_{n,m}} \in M$ for every $n, m \in \omega$. Using closure under ω -sequences once more, we see that $\langle \overline{Y_{n,m}} : n, m \in \omega \rangle \in M$. By elementarity and claim 3, $\overline{Y} \setminus \{x\} \in M$. But $x \in \overline{Y} \in M$, so $x \in M$ by elementarity once more. Since $x \in \overline{X \cap M}$ was arbitrary, $X \cap M$ is closed.

Since X is Lindelöf and $X \cap M$ is closed, we infer that $X \cap M$ is also Lindelöf (in the subspace topology). Put $\mathcal{U} = \{U_y : y \in X \cap M\}$, where the U_y are as in claim 1. Then \mathcal{U} is an open cover of $X \cap M$, hence admits an countable subcover \mathcal{U}_0 . Since $\mathcal{U} \subseteq M$ and M is closed under ω -sequences, we have $\mathcal{U}_0 \in M$. The fact that $\mathcal{U}_0 = \mathcal{U}_0 \cap M$ covers $X \cap M$ says that the statement

$$\forall y \in X \cap M \exists U \in \mathcal{U}_0 \cap M(y \in U)$$

is true. But this means exactly that $M \models (\mathcal{U}_0 \text{ covers } X)$, so $\mathcal{U}_0 \text{ covers } X$ by elementarity (and absoluteness). This is a contradiction, because $z \notin \bigcup \mathcal{U}_0$ (by claim 1) yet $z \in X$.

References

- [1] Alan Dow. "An Introduction to Applications of Elementary Submodels to Topology". In: *Topology Proceedings* 13.1 (1 1988).
- [2] Ryszard Engelking. *General Topology*. 2nd ed. Vol. 6. Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin, 1989.
- [3] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. 2nd ed. Pure and Applied Mathematics. Wiley, 1999. 386 pp.
- [4] R. Hodel. "Cardinal Functions. I". In: Handbook of Set-Theoretic Topology. 1984.
- [5] Kenneth Kunen. Set Theory. Vol. 34. Studies in Logic (London). College Publications, London, 2011.
- [6] Dan Ma. Jones' Lemma. Dan Ma's Topology Blog. July 31, 2012.
- [7] Dan Ma. Network Weight of Topological Spaces I. Dan Ma's Topology Blog. Nov. 16, 2009.
- [8] J Arthur Seebach and Lynn A Steen. Counterexamples in Topology. Vol. 18. Springer, 1978.