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1 Definition. Let (X, τ) be a topological space. We define the following global cardinal functions:

Z The weight of X, w(X) := min{|B| : B is a base for X}.

Z The density of X, d(X) := min{|D| : D ⊆ X is dense }.

Z The spread of X, s(X) := sup{|S| : S ⊆ X is discrete}.

Z The extent of X, e(X) := sup{|C| : C ⊆ X is closed and discrete}.

Z The Lindelöf degree of X,

L(X) := min {κ : every open cover of X has a subcover of size ≤ κ}

Z The network weight of X, nw(X) = min{|N | : N is a network for X}, where a network
is a set N ⊆ P(X) such that whenever x ∈ U ∈ τ , there is some N ∈ N with x ∈ N ⊆ U .

We also have the following local functions, defined for p ∈ X,

Z ψ(X, p) = min{|V| : V is a local base at p}, where V is a local base at p iff V ⊆ τ and
whenever p ∈ U ∈ τ , then p ∈ V ⊆ U for some V ∈ V. In other words, V is a base of open
neighbourhoods of p.

Z ψ(X, p) = min{|V| : V is a pseudo base at p}, where V is a pseudo base at p iff V ⊆ τ
and

⋂
V = {p}.

Z t(X, p) = min{κ : ∀Y ⊆ X(x ∈ Y → ∃A ∈ [Y ]≤κ(x ∈ A))}.

These in turn give rise to global functions:

Z The character of X, χ(X) = sup{χ(X, p) : p ∈ X}.

Z The pseudocharacter of X, ψ(X) = sup{ψ(X, p) : p ∈ X}.

Z The tightness of X, t(X) = sup{t(X, p) : p ∈ X}. ⌟

An easy result:

2 Lemma. Let X be a space. Then e(X) ≤ L(X) ≤ w(X). If X is T0, then |X| ≤ 2w(X).

Proof. Fix E ⊆ X closed and discrete with |E| = e(X). Then {{x} : x ∈ E}∪{X \E} is an open
cover of X with no subcover of size < e(X), hence e(X) ≤ L(X). For the second inequality, fix a
base B with |B| = w(X). If U is an open cover of X, now pick V ⊆ B such that every member of
V is a subset of a member of U (i.e. V refines U) and

⋃
V = X.

Finally, if X is T0 and B is as above, x 7→ ⟨χU (x) : U ∈ B⟩ is an injection X → B2. ■
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3 Lemma. Consider the discrete topology on an infinite cardinal κ. Put Y = κ2. Then d(κY ) = κ
(in the product topology).

Proof. Consider the product topology on Y , so that w(Y ) = κ. Let B be the usual basis for
Y . Let D be the set of p ∈ κY defined as follows: p ∈ D iff there is some finite non-empty
A ⊆ B consisting of pairwise disjoint sets such that p is constant on each member of A and
p[Y \

⋃
A ] = {0}.

Claim. D is dense in κY .

Proof of claim. Fix a basic open set U ⊆ κY , so that there exist F ∈ [Y ]<ω and sets Vy ⊆ κ for
y ∈ F so that U =

∏
y∈Y Uj , where Uy = Vy if y ∈ F and Uy = κ if y ∈ Y \ F .

Since Y is Hausdorff, we can find, for each y ∈ F , By ∈ B such that y ∈ By and the By ∩Bz = ∅
whenever y ̸= z. Choose, for each y ∈ F , an ordinal αy ∈ Vy. Define p ∈ κY by

p(y) :=

{
αy if y ∈ By,

0 otherwise.

By definition, p ∈ D. Also, if y ∈ F , then p(y) = αy ∈ Vy, so p ∈ U . ⊣

To complete the proof, simply note that |D| = κ. ■

4 Theorem (Hewitt-Marczewski-Pondiczery). Let κ be infinite, J a set of size ≤ 2κ, and Xj

spaces with d(Xj) ≤ κ for all j ∈ J . Then d(
∏

j Xj) ≤ κ. In particular, the product of continuum
many separable spaces is separable.

Proof. Fix, for each j ∈ J , Dj ⊆ Xj dense with |Dj | = d(Xj) ≤ κ. Choose surjections
fj : κ→ Dj , which induce a continuous map f =

∏
j fj : κ

Y →
∏

j Dj . Since f is surjective and
continuous, the previous lemma gives d(

∏
j Dj) ≤ κ. But

∏
j Dj is obviously dense in

∏
j Xj ,

and we are done. ■

5 Jones’ Lemma. Let X be a T4 space and E a closed discrete subset of X. Then 2d(X) ≤ 2|E|.

Proof. Fix E closed and discerete and D ⊆ X dense with |D| = d(X). Given A ⊆ E, the
characteristic function of A as computed in E is continuous (because E is discrete), hence extends
to some fA ∈ C(X, [0, 1]) by the Tietze extension theorem (using that E is closed). Note that,
if A ̸= B, then fA ̸= fB, hence fA↾D ̸= fB↾D. This gives an injection P(E) → D[0, 1]. The
codomain has size 2d(X), which completes the proof. ■

By the same argument at the end of the last proof:

6 Lemma. Let X be a space. Then |C(X,R)| ≤ 2d(X).

The seemingly strange concept of network weight is useful for computing the weight of compact
spaces, via the following surprising result:

7 Theorem (Arhangel’skii). Let (X, τ) be a compact Hausdorff space. Then nw(X) = w(X).
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Proof. Every base is a network, so w(X) ≥ nw(X). For the reverse implication, fix a network N
with |N | = nw(X). Define a partial function Φ : N 2 ⇀ τ2 as follows: given (S, T ) ∈ N 2 with
S ∩ T = ∅, if there exist open sets U and V with U ⊇ S, V ⊇ T , and U ∩ V = ∅, then Φ(S, T )
chooses one such pair (U, V ). Let A = dom(ran(Φ)), so that A is the collection of all open sets
which occur as the first (or second, by symmetry) coordinate of a value of Φ. Let B be the set of
finite intersections of members of A .

Claim. B is a basis for X.

Proof of claim. Fix x ∈ U ∈ τ . Given y ∈ X \ U , choose Uy, Vy ∈ τ with x ∈ Uy, y ∈ Vy,
and Uy ∩ Vy = ∅. Since N is a network, we can choose Sy, Ty ∈ N such that x ∈ Sy ⊆ Uy

and y ∈ Ty ⊆ Vy. This shows that Φ is defined at (Sy, Ty), say Φ(Sy, Ty) = (U1
y , V

1
y ), so that

U1
y , V

1
y ∈ A .

Since X is compact and U is open, X \ U is compact. Also, X \ U ⊆
⋃

y∈X\U V
1
y , so we can find

y0, . . . , yn−1 such that X \ U ⊆
⋃

i<n V
1
yi
. Since U1

y ∩ V 1
y = ∅ by definition of Φ, we have that

x ∈
⋂
i<n

U1
yi

⊆
⋂
i<n

X \ V 1
yi

⊆ U.

As
⋂

i<n U
1
yi

∈ B, we are done. ⊣

Obviously, |B| = |A | ≤ |N | = nw(X), so w(X) ≤ nw(X). ■

8 Weight Addition Theorem (Arhangel’skii). Let be (X, τ) a compact Hausdorff space.
Suppose that X =

⋃
α<κXα, where w(Xα) ≤ κ for every α < κ. Then w(X) ≤ κ.

Proof. Fix, for each α < κ, a base Bα for Xα with |Bα| ≤ κ. Put N =
⋃

α<κ Bα. Suppose
x ∈ U ∈ τ . Fix α < κ with x ∈ Xα. Choose B ∈ Bα such that x ∈ B ⊆ Xα ∩ U . Obviously,
x ∈ B ⊆ U . This shows that N is a network for X, and so w(X) = nw(X) ≤ |N | ≤ κ. ■

9 Remark. To see that compactness is necessary, let X be a countable T1 space with uncountable
weight. Examples of such monstrosities include the Appert space and the Arens-Fort space, see
[8], pages 117 and 54 respectively. Now write X as a countable union of finite sets and use that a
finite T1 space has finite weight. ⌟

The following corollary is the first step towards some results about Stone-Čech compactifica-
tions.

10 Corollary. Let X and Y be spaces, with Y compact Hausdorff. Suppose that there exists a
continuous surjection f : X → Y . Then w(Y ) ≤ w(X).

Proof. Let B be a base for X with w(X) = |B|. Then {f [B] : B ∈ B} is a network for Y of size
at most w(X). ■

11 Lemma. If X is a T3 1
2
space, then w(βX) ≤ 2d(X).

Proof. Construe βX as a subspace of [0, 1]C(X,[0,1]) (see [3] for details). This latter space can be

viewed as a subspace of [0, 1]2
d(X)

(by lemma 6), and this has weight 2d(X). ■
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12 Corollary. w(βω) = 2ℵ0 .

Proof. The (≤) inequality follows from the previous lemma. To see the reverse inequality, first
note that nw(βω) = w(βω) by Arhangel’skii’s theorem, so it suffices to show nw(βω) ≥ 2ℵ0 .

By the Hewitt-Marczweski-Pondiczery theorem, II
ω ∼= II is separable. Fix D ⊆ II dense and

countable and a bijection f : ω → D. Then f : ω → II is continuous, so it extends to some
continuous βf : βω → II by the compactness of II and general abstract nonsense. By continuity,
the range of βf is compact, hence closed (because βω is Hausdorff). But D ⊆ ran(βf), so
ran(βf) = βω and so nw(βω) ≤ nw(II) = w(II) = 2ℵ0 . ■

We remark that, since βf : βω → II is surjective, the proof also gives that |βω| ≥ 22
ℵ0
. This

argument is independent of the ultrafilter argument using independent sets.

The next theorem answers a question of Alexandroff and Urysohn from 1923: if a space is
Hausdorff, first countable, and compact, must it be of size at most continuum?

13 Theorem (Arhangel’skii, 1969). Let X be a Hausdorff space with L(X) = t(X) = ψ(X) = ℵ0.
Then |X| ≤ ℵ0.

In fact, Arhangelsk’ii proved a stronger result, namely that |X| ≤ 2L(X)χ(X) whenever X is
T1, but we will prove the version above to ilustrate the use of model theoretic methods. The
interested reader can consult page 19 of [4].

Our proof follows [1]. While elementary submodels abstract Pol’s closure proof, I do not know
who first used them in this context.

Proof. Fix B a base for X. Let λ be a large enough regular cardinal so that (X,B) ∈ Hλ. Choose
M ≺ Hλ so that ωM ⊆M , (X,B) ∈M , and |M | = 2ℵ0 . The strategy of the proof is to show that
X ∩M = X, which will in particular establish the desired cardinality bound. Suppose therefore
that X ∩M ̸= X,and fix z ∈ X \M .

Claim 1. For every y ∈ X ∩M there is some Uy ∈ B ∩M such that y ∈ Uy and z ̸∈ Uy.

Proof of claim 1. Fix y ∈ X ∩M . Since X has countable pseudcharacter, the elementarity of
M gives U ∈M ∩ [B]ω such that

⋂
U = {y}. Choose Uy ∈ U such that z ̸∈ Uy. Since U ∈M is

countable, U ⊆M by elementarity, so Uy ∈M . ⊣

The next step is to show that X ∩M is closed in X. Fix x ∈ X ∩M . Since X has countable
tightness, there is some countable Y ⊆ X∩M such that x ∈ Y . Use the countable pseudocharacter
to find ⟨Vn : n < ω⟩ ∈ ωB such that {x} =

⋂
n Vn. Now fix n ∈ ω.

Claim 2. There is a family ⟨Vn,m : n,m ∈ ω⟩ such that X \Vn ⊆
⋃

m∈ω Vn,m and x ̸∈
⋃

m∈ω Vn,m.

Proof of claim 2. Fix y ∈ X \ Vn, so that x ̸= y and we can find Vy,Wy ∈ B such that
x ∈Wy, y ∈ Vy, and Vy ∩Wy = ∅. Since Vn is open and X is Lindelöf, X \ Vn is Lindelöf, so we
can find {yn,m : m ∈ ω} ⊆ X \ Vn such that X \ Vn ⊆

⋃
m∈ω Vyn,m . Put Vn,m := Vyn,m . This

works. ⊣

Let Yn,m := Y ∩ Vn,m.
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Claim 3. Y \ {x} =
⋃

n,m∈ω Yn,m.

Proof of claim 3. ⊆) Let y ∈ Y \ {x}. Choose n ∈ ω such that y ∈ X \ Vn, and then choose
m ∈ ω with y ∈ Vn,m. Since Vn,m is open and y ∈ Y , we infer that y ∈ Y ∩ Vn,m = Yn,m. This is
a general topology fact: if A ⊆ X and V is open, then V ∩A ⊆ V ∩A. Indeed, if p ∈ V ∩A and
W is an open neighbourhood of p, then so is V ∩W , so A ∩ (V ∩W ) ̸= ∅ by p ∈ A.

⊇) Fix n,m ∈ ω and y ∈ Yn,m. Since x ̸∈ Vn,m, we have y ̸= x. Also, Yn,m ⊆ Y , so y ∈ Y \{x}. ⊣

Now, Y ⊆ X ∩M is countable, so Y ∈M because M is closed under countable sequences, hence
Y ∈M by elementarity. By the same logic, Yn,m ∈M and Yn,m ∈M for every n,m ∈ ω. Using
closure under ω-sequences once more, we see that ⟨Yn,m : n,m ∈ ω⟩ ∈M . By elementarity and
claim 3, Y \ {x} ∈M . But x ∈ Y ∈M , so x ∈M by elementarity once more. Since x ∈ X ∩M
was arbitrary, X ∩M is closed.

Since X is Lindelöf and X ∩M is closed, we infer that X ∩M is also Lindelöf (in the subspace
topology). Put U = {Uy : y ∈ X ∩M}, where the Uy are as in claim 1. Then U is an open
cover of X ∩M , hence admits an countable subcover U0. Since U ⊆M and M is closed under
ω-sequences, we have U0 ∈M . The fact that U0 = U0 ∩M covers X ∩M says that the statement

∀y ∈ X ∩M∃U ∈ U0 ∩M(y ∈ U)

is true. But this means exactly that M |= (U0 covers X), so U0 covers X by elementarity (and
absoluteness). This is a contradiction, because z ̸∈

⋃
U0 (by claim 1) yet z ∈ X. ■
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