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1 Preliminaries and outline

Let KC be the statement “For every compact Hausdorff space X and every Banach algebra A
there is no discontinuous algebra homomorphism C(X,C) → A.”. Here, C(X,C) denotes the set
of complex valued continuous functions X → A. One can also consider real valued functions (in
which case A must be a real algebra), both statements are equivalent.

The question of whether KC was originally raise (in a slightly different form) by Kaplansky, and
became known as “Kaplansky’s Conjecture” (there is also an algebraic problem of the same
name).

In 1976, Dales and Esterle independently proved that CH implies ¬KC (for a proof, see Theorem
5.7.20 on page 771 of [1]) .

The aim of these notes is to present (part of) a proof of the following result:

1.1 Theorem (Solovay-Woodin). If ZFC is consistent, then so is the ZFC +MA(ℵ1) + KC.

Our treatment mostly follows [4], although we fix some issues (hopefully without introducing new
ones) and provide more (too many?) details. An alternative treatment can be found in [2], where
all forcing arguments are stated in the language of Boolean algebras.

To state the key theorem which takes us from the world of Banach algebras into set theory, we
need some terminology.

1.2 Definition. Let f, g ∈ ωω.

1



Z f < g ⇐⇒ ∀n ∈ ω(f(n) < g(n)).

Z f ≤ g ⇐⇒ ∀n ∈ ω(f(n) ≤ g(n)). Note that < is not the strict part of ≤.

Z f <F g ⇐⇒ {n ∈ ω : f(n) < g(n)} ∈ F , where F is a filter on ω. When F is the Frechet
filter (i.e. the filter of cofinite sets), then we write <∗ instead of <F . Note that

f <∗ g ⇐⇒ ∀∞n ∈ ω(f(n) < g(n)) ⇐⇒ ∃m ∈ ω∀n ≥ m(f(n) < g(n))

Z f ≤F g ⇐⇒ {n ∈ ω : f(n) ≤ g(n)} ∈ F , where F is a filter on ω. Again, we write ≤∗

when F is the Frechet filter. Note that <F is not the strict part of the preorder ≤F .

Z f ≪ g ⇐⇒ lim
n→∞

g(n)− f(n) = ∞.

We also write f =F g ⇐⇒ {n ∈ ω : f(n) = g(n)} ∈ F . Again, when F is the Frechet filter, we
write =∗ instead of =F . Clearly, =F is an equivalence relation of ωω. We let [f ]F denote the
equivalence class of F .

Obviously, if F and G are filters, with F ⊆ G, then f <F g implies f <G g. In particular, f <∗ g
implies f <U g whenever U is a non-principal ultrafilter. ⌟

Let U be a non-principal ultrafilter on ω. By elementary model theory, the ultrapower (ωω/U , <U )
is totally ordered. Given f ∈ ωω, consider the initial segment

SU (f) := {[h]U : h <U f} . (1)

1.3 Definition. Let (P, <P) and (Q, <Q) be strict partial orders. A map f : P → Q is order
preserving iff for all p, p′ ∈ P,

p <P p
′ =⇒ f(p) <Q f(p

′)

We say f is an order embedding iff for all p, p′ ∈ P,

p <P p
′ ⇐⇒ f(p) <Q f(p

′)

If there is such an f , we say that P embeds into Q.

Note that, if P is a total order, then every order preserving function is an order embedding. ⌟

1.4 Theorem (Woodin). Suppose there exist a compact Hausdorff space X, a Banach algebra A
and a discontinuous algebra homomorphism θ : C(X,C) → A. Then there exist a non-principal
ultrafilter U on ω, a monotone1 and unbounded g ∈ ωω, and an order preserving function
π : (SU (g), <U ) → (ωω, <).

The conclusion of 1.4 is sometimes called “Woodin’s Condition”. We shall not prove 1.4, as
the argument is rather long. We refer the interested reader to [2] for the proof and to [1] for
background material in Banach algebras.

So, the strategy to prove 1.1 will be to obtain a model where there is no order preserving function
π : (SU (g), <U ) → (ωω, <) for any g and U as above. This is done by considering an intermediate
ordering through which our map would factor.

1i.e. n ≤ m → g(n) ≤ g(m).
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Consider the set 2ω1 ordered lexicographically, that is

x <ℓ y ⇐⇒ ∃α < ω1[x↾α = y↾α ∧ x(α) = 0 ∧ y(α) = 1]

It is plain that (2ω1 , <ℓ) is totally ordered.

1.5 Theorem. Assume MA(ℵ1). Let U be a non-principal ultrafilter on ω and g ∈ ωω unbounded
and monotone. Then (2ω1 , <ℓ) embeds into (SU (g), <U ).

1.6 Theorem. There is a model of MA(ℵ1) which satisfies the statement “(2ω1 , <ℓ) does not
embed into (ωω, <∗)”.

Assuming this, the proof of 1.1 is immediate:

Proof of 1.1. Work in the model of 1.6. Assume ¬KC. By 1.4, there exist U a non-principal
ultrafilter on ω, g ∈ ωω monotone and unbounded, and an order preserving map π : (SU (g), <U
) → (ωω, <). Since (SU (g), <U ) is a total order, π is an order embedding. By 1.5, pick an
embedding f : (2ω1 , <ℓ) → (SU (g), <U ). Clearly, π ◦ f is an embedding from (2ω1 , <ℓ) into
(ωω, <∗). This contradicts 1.6. ■

2 Gaps

2.1 Definition. Let (P, <) be a strict order. Given A ⊆ P and p ∈ P, we write A < p iff
a < p for every x ∈ A. We analogously define p < A. Given A,B ⊆ P, we write A < B iff
∀a ∈ A∀b ∈ B(a < b).

A pregap is a pair (A,B) of subsets of P such that A < B. We say that a pregap (A,B) is a gap
iff there is no c ∈ P with A < c < B (such a c is said to fill, interpolate or separate the pregap).

A (κ, λ)-pregap is a pregap (A,B) such that (A,<) is well-ordered with type κ and (B,>) is
well-ordered with type λ. Note that the order on B has been reversed. More explicitly, there
exist sequences ⟨aα : α < κ⟩, ⟨bβ : β < λ⟩ such that A = {aα : α < κ}, B = {bβ : β < λ}, and for
all α1 < α2 < κ and all β1 < β2 < λ,

aα1
< aα2

< bβ2
< bβ1

.

A (κ, λ)-gap is a (κ, λ)-pregap which is also a gap. ⌟

We will often blur the distinction between the sets A,B and their enumerations. For instance, we
might call the pair of enumerations a gap. This is all permissible, since (A,B) can be computed
from their order preserving/reversing enumerations, and vice versa.

2.2 Lemma. The ordered set (ωω, <∗) has no (ω, ω)-gaps. Moreover, if (⟨fn : n < ω⟩, ⟨gn : n < ω⟩)
is an (ω, ω)-pregap, then there exist f, g ∈ ωω such that, for all n ∈ ω,

fn <
∗ f ≪ g <∗ gn. (2)

Proof. Find natural numbers k0 < k1 < . . . such that, for every n ∈ ω and every i ≥ kn,

f0(i) < · · · < fn(i) < gn(i) < · · · < g0(i).

Define f(i) = fn(i) whenever kn ≤ i < kn+1 (f(i) for i < k0 can be defined arbitrarily) and define
g(i) = fn(i) whenever kn ≤ i < kn+1 (same comment). This works. ■
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2.3 Lemma. Assume MA(ℵ1) holds. Let (⟨fα : α < ω1⟩, ⟨gα : α < ω1⟩) be an (ω1, ω1)-pregap in
(ωω, <∗). Let U be a non-principal ultrafilter on ω. Then there is some h ∈ ωω such that, for
every α < ω1, fα <U h <U gα. In other words, (⟨fα : α < ω1⟩, ⟨gα : α < ω1⟩) is not a gap in
(ωω, <U ).

Proof. As hinted by the hypothesis, we shall define a ccc poset which introduces the desired
object. First, some terminology. Given x ⊆ ω1 and n ∈ ω, we shall say that n is large enough for
x iff for every α, β ∈ x with α < β and every i ≥ n,

fα(i) ≤ fβ(i) ≤ gβ(i) ≤ gα(i).

Clearly, for every finite x ⊆ ω1 there is some n ∈ ω which is large enough for x. The reason to
prefer ≤ over < will become clear later.

Let P be the set of all triples (x, u, v) ∈ [ω1]
<ω × ω<ω × ω<ω such that |u| = |v| =: np is large

enough for x.

We remark that, if (x, u, v) ∈ P and u′ and v′ are (function) extensions of u and v respectively,
then (x, u′, v′) ∈ P.

Given conditions p = (x, u, v) and p′ = (x′, u′, v′), we say p ≤ p′ iff the following hold

(i) x ⊇ x′,

(ii) u ⊇ u′,

(iii) v ⊇ v′,

(iv) for every α ∈ x and every i ∈ ω with np′ < i ≤ np, either fα(i) ≤ u(i) ≤ gα(i) or
fα(i) ≤ v(i) ≤ gα(i).

This definition may seem rather strange (specially the disjunction in (iv)), but there’s a reason
the “obvious simplification” of the forcing doesn’t work (see the remark after the proof). Note
that P does not depend on U .

Claim 1. P is σ-linked2. In particular, P is ccc.

Proof of claim 1. Since
⋃

n∈ω ω
n × ωn is countable, it suffices to show that any two conditions

which agree on their second and third coordinates are compatible. So, fix p = (x, u, v) ∈ P and
q = (y, u, v) ∈ P. Put n := np = nq. By assumption, n is large enough for both x and y. Since
x∪ y is finite and the functions form a pregap, we can find n′ > n which is large enough for x∪ y.

Put δ = max(x) and γ = max(y). Pick functions u′, v′ : n′ → ω which extend u and v, respectively,
and such that, if n < i ≤ n′, then fδ(i) ≤ u′(i) ≤ gδ(i) and fγ(i) ≤ v′(i) ≤ gγ(i). This is possible
because n is large enough for x. Now let r := (x ∪ y, u′, v′). It is immediate that r is a condition
(because n′ is large enough for x ∪ y). To see that r ≤ p, fix α ∈ x. If n < i ≤ n′, then

fα(i) ≤ fδ(i) ≤ u(i) ≤ gδ(i) ≤ gα(i), (3)

so that (iv) holds (note the relevance of the or). Items (i),(ii),(iii) are obvious, so r ≤ p. The
proof of r ≤ q, is entirely analogous, replacing δ by γ in (3).

2Given a poset Q, a set L ⊆ Q is said to be linked iff elements of L are pairwise compatible. We say Q is
σ-linked iff it is the union of countably many linked subsets.
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We remark that, if the definition of “large enough” used < instead of ≤, then we might not be
able to complete the proof. Indeed, it could happen that fδ(i) + 1 = gδ(i) for some relevant3 i, in
which case we won’t be able to find a natural number strictly between fδ(i) and gδ(i). This is
the reason to prefer ≤. ⊣

We now need suitable dense sets, in order to apply MA(ℵ1).

Claim 2. Define, for n ∈ ω and α < ω1,

Dn := {p ∈ P : np ≥ n}

and
Eα := {(x, u, v) ∈ P : α ∈ x}.

Then every Dn and every Eα is dense in P.

Proof of claim 2. We first deal with Dn. Fix p = (x, u, v) ∈ P. Suppose that n > np (otherwise
p ∈ Dn). If δ := max(x), then fδ(i) < gδ(i) for any i ≥ np because p is a condition. Extend u
and v to u′ and v′, respectively so that |u′| = |v′| = n and fδ(i) < u′(i), v′(i) < gδ(i) whenever
np < i ≤ n. Put q := (x, u′, v′), which is obviously in Dn. By the choice of δ, it is easy to see
that q ≤ p, and we’re done. Note that we are actually verify a stronger version of (iv) (with “and”
replacing “or”).

Next, we deal with Eα. Fix p = (x, u, v) ∈ P and assume α ̸∈ x. Pick n > |u| large enough for
x ∪ {α}. If δ := max(x) and i ≥ |u|, then fδ(i) ≤ gδ(i) because p ∈ P, so we can let u′ and v′ be
any extensions of u and v, respectively, such that |u′| = |v′| = n and fδ(i) ≤ u′(i), v′(i) ≤ gδ(i).
Put q := (x∪{α}, u′, v′). Because |u′| = n, q ∈ P by choice of n. It is also easy to see that q ∈ Eα

and q ≤ p. Once again, we are verifying the stronger version of (iv). ⊣

By MA(ℵ1), we can find a filter G on P which meets every member of the family {Dn : n ∈
ω} ∪ {Eα : α < ω1}. Define

h1 :=
⋃

{u : ∃x∃v(x, u, v) ∈ G}

h2 :=
⋃

{v : ∃x∃u(x, u, v) ∈ G}.

Because G ∩ Dn ̸= ∅ for every n < ω, we see that h1, h2 : ω → ω. Now, fix α < ω1. Because
Eα+1 ∩ G ≠ ∅, we can find some p = (x, u, v) ∈ G with α + 1 ∈ x. Take n ≥ |u| such that, if
i ≥ n, then fα(i) < fα+1(i) < gα+1(i) < gα(i). It now follows that, if i ≥ n, then one of the
following must hold

fα(i) < fα+1(i) ≤ h1(i) ≤ gα+1(i) < gα(i),

fα(i) < fα+1(i) ≤ h2(i) ≤ gα+1(i) < gα(i).
(4)

Therefore, we have that, for each i ≥ n, one of the following must hold

fα(i) < h1(i) < gα(i),

fα(i) < h2(i) < gα(i).
(5)

3of course, fδ ≪ gδ by (the proof of) 2.2, but this only controls the eventual behaviour of the functions.
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We remark that this is NOT the same as saying that one of the following holds

fα <
∗ h1 <

∗ gα,

fα <
∗ h2 <

∗ gα

There is no reason to expect that the same function (h1 or h2) will work for every i ≥ |u|. In
fact, this can’t happen, because it is provable in ZFC that (ωω, <∗) has (ω1, ω1)-gaps (this is due
to Hausdorff). The current setting is quite Ramsey theoretic; we’re colouring pairs (i, α) by two
colours {h1, h2}. The colour depends both on i and α.

It is now, as is often the case with Ramsey theory and ω1, that the presence of the ultrafilter
comes to our aid.

Claim 3. Either
∀α < ω1(fα <U h1 <U gα)

or
∀α < ω1(fα <U h2 <U gα).

Proof of claim 3. Suppose not. Then, we can find α, β < ω1 such that ¬(fα <U h1 <U gα) and
¬(fβ <U h2 <U gβ). Assume without loss of generality that α < β. We know that

fα <
∗ fβ <

∗ gβ <
∗ gα,

hence
fα <U fβ <U gβ <U gα

because U is non-principal. This entails that ¬(fβ <U h1 <U gβ). Put

A := {i ∈ ω : fβ(i) < h1(i) < gβ(i)},
B := {i ∈ ω : fβ(i) < h2(i) < gβ(i)}.

By (5), ω \ (A∪B) is finite. Since U is non-principal, A∪B ∈ U . Finally, since U is an ultrafilter,
A ∈ U or B ∈ U . But A ∈ U iff fβ <U h1 <U gβ and B ∈ U iff fβ <U h2 <U gβ . This is a
contradiction. ⊣

Let h ∈ {h1, h2} witness Claim 3. Then h fills the pregap, and this completes the proof. ■

2.4 Remark. Looking back at the proof, one may be tempted to instead consider the following,
seemingly simpler poset: conditions are pairs (x, u) ∈ [ω1]

ω × w<ω with |u| large enough for x.
The order relation is defined by (x, u) ≤ (y, v) iff

Z x ⊇ y,

Z u ⊇ v,

Z for every α ∈ y and every i ∈ |u| \ |v|, fα(i) ≤ u(i) ≤ gα(i).

Call this modified poset Q. Ostensibly, the proof cannot possibly go through with Q, since then
we would be able to fill any (ω1, ω1)-pregap in (ωω, <∗), which is impossible by the aforementioned
theorem of Hausdorff. Still, I find it instructive to pinpoint where things go wrong.

Let’s try to imitate the proof of the ccc. Fix (x, u), (y, u) ∈ Q. The compatibility of these two
conditions is equivalent to the existence of some v ∈ w<ω extending u such that |v| is large enough
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for x ∪ y and, for every ξ ∈ x ∪ y and every i ∈ [|u|, |v|), fξ(i) ≤ v(i) ≤ gξ(i). But, suppose there
are α ∈ x \ y, β ∈ y \ x, and j > |u| such that fα(j) > gβ(j). Then there can be no such v with
j < |v|. Of course, there are only finitely many such j, but there well could be some past |u|.
This doesn’t immediately show that the ccc fails (just that the argument we just gave doesn’t
work), but this can be seen indirectly as follows: suppose Q had the ccc. If one examines the
proof of Claim 2 and defines analogous dense sets, the argument does go through, and these are
dense. In particular, if (x, u) and (y, u) were compatible, they would have a common extension
where the second coordinate has length above j. But we just saw that this was not possible.

By the same logic, if we switch the “or” in (iv) to an “and”, the sets in Claim 2 are dense, but
the poset is not ccc. ⌟

Proof of 1.5. Fix U and g as in the statement of 1.5. We define ⟨ft : t ∈ 2<ω1⟩ and ⟨gt : t ∈ 2<ω1⟩
with ft, gt ∈ ωω and ft ≪ gt. This is done by recursion on |t|. First, since g is unbounded and
monotone, we may find f⟨⟩ ≪ g⟨⟩ ≪ g. Given ft ≪ gt, we can reason as in 2.2 to find ft⌢0 and
gt⌢1 with ft ≪ ft⌢0 ≪ gt⌢1 <≪ gt. Do this again to find ft⌢1 and gt⌢0 with

ft ≪ ft⌢0 ≪ gt⌢0 ≪ ft⌢1 ≪ gt⌢1 ≪ gt. (6)

If t has limit length, take ⟨αn : n < ω⟩ increasing and cofinal in dom(t) and apply 2.2 to
⟨ft↾αn

: n < ω⟩ and ⟨gt↾αn
: n < ω⟩. This produces ft, gt such that fs ≪ ft ≪ gt ≪ gs for

any s < t.

Fix b ∈ 2ω1 . Then (⟨fb↾α : α < ω1⟩, ⟨gb↾α : α < ω1⟩) is an (ω1, ω1)-pregap in (ωω, <U ), so by 2.3
we may find hb ∈ ωω such that ft <U hb <U gt for every t < b.

Suppose b, c ∈ 2ω1 and b <ℓ c, say b↾ξ = c↾ξ but b(ξ) = 0 and c(ξ) = 1. Put t := b↾ξ = c↾ξ. Then,
by (6),

hb <U gt⌢0 <U ft⌢1 <U hc.

This shows that b 7→ hb is order preserving, which completes the argument. ■

Now, the statement “(A,B) is a gap” is not (upwards) absolute for models of set theory. Indeed,
a gap may cease to be a gap when passing to a larger universe. For example, if we collapse ω1 to
be countable, then the pregap is filled by 2.2 applied in the extension. If we want to preserve
ω1, things are not so trivial. There is a forcing, due to Laver, which is sometimes ccc and fills a
prescribed gap (for details, see section 4 of Baumgartner’s chapter in [6]). On the other hand,
given some class Γ of forcing posets, say that a gap (A,B) is Γ-indestructible iff for every P ∈ Γ,
⊩P (A,B) is a gap. We will see later that, if MA(ℵ1) holds, then every (ω1, ω1)-gap in (ωω, <∗)
is P(ω1)-indestructible, where P(ω1) is the class of posets that preserve ω1. So, in a sense, the
collapsing example above is optimal.

With these absoluteness considerations in mind, we introduce the following definition:

2.5 Definition. Let (⟨fα : α < ω1⟩, ⟨gα : α < ω1⟩) be an (ω1, ω1)-pregap in (ωω, <∗). We say
that is is a strong gap iff

(i) for every α < ω1, fα < gα, i.e. fα(i) < gα(i) for every i ∈ ω,

(ii) if α ̸= β, then there is some i ∈ ω with fα(i) ≥ gβ(i) or fβ(i) ≥ gα(i). ⌟

Obviously, being a strong gap is absolute for transitive models of enough set theory (with the
same ω1). Before going further, we verify that, as the name indicates:
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2.6 Theorem. Every strong gap is a gap.

Proof. Let (⟨fα : α < ω1⟩, ⟨gα : α < ω1⟩) be an (ω1, ω1)-pregap in (ωω, <∗). Suppose that there
is some h ∈ ωω with fα <∗ h <∗ gα for every α < ω1. By the Pigeonhole Principle, we can
find some uncountable set X ⊆ ω1 and some fixed n ∈ ω such that ∀α ∈ X, if i ≥ n, then
fα(i) < h(i) < gα(i). By further thinning out, we may assume that the sets {fα↾n : α ∈ X} and
{gα↾n : α ∈ X} both consist of a single element. Since X is uncountable, we may find α, β ∈ X
with α ̸= β. Let i ∈ ω, If i < n, then

fβ(i) = fα(i) < gα(i).

If i ≥ n, then
fα(i) < h(i) < gβ(i)

because h fills the gap. In either case, (ii) fails, which is a contradiction. ■

2.7 Definition. Two (ω1, ω1)-pregaps (⟨fα : α < ω1⟩, ⟨gα : α < ω1⟩) and (⟨f ′α : α < ω1⟩, ⟨g′α : α < ω1⟩)
are said to be equivalent iff for every α < ω1, fα =∗ f ′α and gα =∗ g′α. ⌟

The following is trivial:

2.8 Lemma. Given two equivalent pregaps, one of them is a gap if and only if the other one is a
gap.

Looking ahead, the strategy to prove 1.6 is to show that an embedding (2ω1 , <ℓ) → (ωω, <∗) would
give rise to a certain filled pregap in (ωω, <∗), call it (X,Y ). We will construct a finite support
iteration of length ω2 such that not only does (X,Y ) appear in some intermediate extension, but
it is additionally a gap there. We shall then force to seal off the gap (X,Y ), in the sense that
it can’t become filled in any further extension. The standard bookkeeping will ensure that we
capture every relevant pregap. So, if we assume the existence of an embedding in the final model,
this will induce a filled pregap which must appear at some point of the construction, and hence
got sealed off and can’t be filled, which is a contradiction.

2.9 Lemma. Let (⟨fα : α < ω1⟩, ⟨gα : α < ω1⟩) be a gap. There is a ccc notion of forcing that
adds an equivalent strong gap.

Proof. Let Q be the set of finite partial functions p : ω1 → ωω × ωω such that

(i) if α ∈ dom(p) and p(α) = (f, g), then fα =∗ f ≤ g =∗ gα,

(ii) if α, β ∈ dom(p) with α ̸= β, say p(α) = (f, g) and p(β) = (f ′, g′), then either f ̸≤ g′ or
f ′ ̸≤ g.

We remark that (i) necessitates that p is injective, because α < β implies fα < fβ < gβ < gα. We
order Q by p ≤ q iff p ⊇ q. Also, if p ∈ Q and s is any set with s ⊆ q, then s ∈ Q. In particular,
two conditions p and q are compatible iff p ∪ q ∈ Q.

Another important remark is that, for any finite x ⊆ ω1, there are only countably many p ∈ Q
with dom(q) = x. This follows from (i), since there are only countably many possible values for
each p(α).

Claim 1. Q has the ccc.
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Proof of claim 1. Suppose A ⊆ Q is an uncountable antichain. By the remark before the claim, we
may assume, shrinking A if necessary, that dom(p) ̸= dom(q) whenever p and q distinct elements
of A. By further shrinking if necessary, we may assume that {dom(p) : p ∈ A} forms a ∆-system
with root R. Moreover, we may assume that |R| is minimal among all uncountable antichains
whose domains form ∆-systems. By a final shrinking using the remark preceding the claim, we
may assume that p↾R = q↾R for every p, q ∈ A.

Pick any two p, q ∈ A with p ̸= q. Put r := p ∪ q. Since A is an antichain, r ̸∈ Q. On the other
hand, r is finite partial function ω1 → ωω × ωω and (i) holds for r, and so (ii) must fail. Pick
α, β ∈ dom(r) such that, letting r(α) = (f, g) and r(β) = (f ′, g′), f ≤ g′ and f ′ ≤ g. Because
p and q are conditions, α and β can’t belong to R. Without loss of generality, α ∈ dom(p) \R
and β ∈ dom(q) \R. It follows that the conditions p↾(dom(p) \R) and q↾(dom(q) \R) are also
incompatible.

Consider the set {p↾(dom(p) \ R) : p ∈ A}. From the last paragraph, it is an uncountable
antichain, and it trivially forms a ∆-system with root ∅. If R ̸= ∅, this would contradict the
minimality of |R|, so R = ∅ and hence dom(p) ∩ dom(q) = ∅ whenever p, q ∈ A and p ̸= q.

Now let, for every p ∈ A,

Fp(i) := min{f(i) : ∃α ∈ dom(p)∃g ∈ ωω(p(α) = (f, g))}
Gp(i) := max{g(i) : ∃β ∈ dom(p)∃f ∈ ωω(p(α) = (f, g))}

Note that, Fp ≤ Gp for every p ∈ A. Indeed, fix p ∈ A andi ∈ ω. Say Fp(i) = f(i) where
p(α) = (f, g) for some α ∈ dom(p) and some g ∈ ωω. Then, by (i),

Fp(i) = f(i) ≤ g(i) ≤ Gp(i).

In fact, more is true. Let p, q ∈ A. Since p ∪ q ̸∈ Q, (ii) must fail, and so we can find
α ∈ dom(p), β ∈ dom(q), and f, g, f ′, g′ ∈ ωω such that p(α) = (f, g), q(β) = (f ′, g′), f ≤ g′, and
f ′ ≤ g. But now, for any i ∈ ω,

Fp(i) ≤ f(i) ≤ g′(i) ≤ Gq(i).

In other words, Fp ≤ Gq for every p, q ∈ A. Therefore,

h(i) := max{Fp(i) : p ∈ A} ≤ Gq(i)

for any q ∈ A.

Fix α < ω1. Since {dom(p) : p ∈ A} is an uncountable of non-empty and pairwise disjoint subsets
of ω1, we may find p ∈ A such that α < δ := max(dom(p)). Pick n ∈ ω witnessing fξ <

∗ fδ for
every ξ ∈ (dom(p) ∪ {α}) \ {δ}. If i ≥ n, then

h(i) = Fp(i) = fδ(i) > fα(i).

This shows that fα <
∗ h. On the other hand, if m is large enough to witness gδ <

∗ gξ for every
ξ ∈ (dom(p) ∪ {α}) \ {δ}, then, for any I ≥ m,

h(i) ≤ Gp(i) = gδ(i) < gα(i).

We have established that fα <
∗ h <∗ gα for every α < ω1. But then (⟨fα : α < ω1⟩, ⟨gα : α < ω1⟩)

is not a gap, contradiction. ⊣
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To show the forcing assertion, start by letting

Dα = {p ∈ Q : α ∈ dom(p)}, (7)

where α < ω1. Note that Dα is dense in Q for every α < ω1. Indeed, fix α < ω1 and q ∈ Q with
α ̸∈ dom(q). Enumerate dom(q) as {βi : i < |q|} and write q(β) = (fq, gq). Pick n ∈ ω which is
large enough to witness fα <

∗ gα. Define f, g ∈ ωω as follows:

Z If i < |q|, then choose f(i) > gqβi
(i) and put g(i) = f(i) + 1,

Z if |x| ≤ i < n, let f(i) = 0 = g(i),

Z if i ≥ n, the f(i) = fα(i) and g(i) = gα(i).

Then f ̸≤ gβ (as witnessed by i for β = βi) for any β ∈ dom(q). We also have f ≤ g, f =∗ fα,
and g =∗ gα. Put p := q ∪ {(α, (f, g))}. By construction, p is a condition, p ∈ Dα, and p ≤ q.
This shows that Dα is dense in Q.

Fix G Q-generic over the ground model V . Then
⋃
G : ω1 → ωω × ωω because G ∩ Dα ̸=

∅ for every α < ω1. Write (f ′α, g
′
α) = (

⋃
G)(α). Conditions (i) and (ii) guarantee that

(⟨f ′α : α < ω1⟩, ⟨g′α : α < ω1⟩) is a strong gap which is equivalent to the starting gap. ■

2.10 Corollary. Assume MA(ℵ1). Then every (ω1, ω1)-gap in (ωω, <∗) is P(ω1)-indestructible.

Proof. Given an (ω1, ω1)-gap in (ωω, <∗), associate Q to it as in the previous theorem. If G is a
filter in Q which is {Dα : α < ω1}-generic (same definition as in (7)), then the argument at the
end of the last proof still goes through. Such a G exists because we are only considering ℵ1 many
dense sets, MA(ℵ1) holds, and Q has the ccc. This gives, in the universe, an equivalent strong
gap. Every strong gap is P(ω1)-indestructible by the absoluteness considerations we mentioned
before. Hence so is the starting gap. ■

3 Interlude on forcing

We now have all the machinery we need to prove 1.6. Before actually doing that, we recall some
forcing terminology and associated facts. Following [5],

3.1 Definition. Let P be a forcing poset and τ a P-name. We say that a P-name ϑ is a nice
name for a subset of τ iff ϑ has the form

ϑ :=
⋃

σ∈dom(τ)

{σ} ×Aσ,

where each Aσ is an antichain in P. ⌟

There are not too many nice names:

3.2 Lemma. Let P be a forcing poset and τ a P-name. If P has the κ-cc, then there are at most
|P|κ|dom(τ)| many nice names for subsets of τ .

Proof. There are |P|κ many antichains in P, and a nice name is determined by a function from
dom(τ) into the set of antichains of P. ■

On the other hand, there are enough nice names to name everything of relevance:
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3.3 Lemma. Let P be a forcing poset and τ, µ a P-name. There exists some ϑ which is a nice
P-name for a subset of τ and such that ⊩ (µ ⊆ τ → µ = ϑ).

For a proof, see [5], Lemma IV.3.10.

3.4 Lemma. Let P be a forcing poset that has the ccc. Suppose λ is an infinite cardinal and put
δ := |P|λ. Then ⊩ 2λ ≤ δ (where 2λ is computed in the extension).

This follows by counting nice names for subsets of λ̌, see [5], Lemma IV.3.11.

As an immediate consequence, we get the following result:

3.5 Lemma. Assume CH holds. Let P be a forcing poset that has the ccc. Suppose |P| ≤ ℵ1.
Then ⊩ CH.

In what follows, a “real” will be a function ω → ω. Also, when dealing with names of the form x̌,
we shall say “nice P-name for a subset of x” instead of the formally more correct “nice P-name for
a subset of x̌”. This is standard in modern forcing literature and will cause no confussion

3.6 Lemma. Assume CH and 2ℵ1 = ℵ2. Let P be a forcing poset of size ℵ1 that has the ccc.
There exists a set X with |X| ≤ ℵ2 which satisfies the following: For every P-name ḟ such that
⊩ ḟ : ω1 → ω̇ω, there is some τ ∈ X with ⊩ τ = ḟ .

We remark that the symbol ω̇ω in the statement is a P-name for the set of reals as computed in
the extension. Writing ω1 is unambiguous by the ccc.

Given two names σ, µ, we let op(σ, µ) be the canonical name for the ordered pair (σ, µ)

Proof. LetX be the set of all P-names of the form {(op(ξ̌, τξ),1) : ξ < ω1}, where and ⟨τξ : ξ < ω1⟩
is a sequence of nice P-names for subsets of ω×ω. By 3.2 and our cardinal arithmetic assumptions,
there are at most

ℵℵ1ℵ0
1 =

(
2ℵ0

)ℵ1
= ℵ2

many nice P-names for subsets of ω × ω. But then |X| ≤ (ℵ2)
ℵ1 = ℵ2.

To check that X has the prescribed properties, fix ḟ such that ⊩ ḟ : ω1 → ω̇ω. For each ξ < ω1,
⊩ ḟ(ξ) : ω → ω, so ⊩ ḟ(ξ) ⊆ ω × ω. By the Maximal Principle, choose, for each ξ < ω1, τξ which

is a nice P-name for a subset of ω × ω such that ⊩ ḟ(ξ) ⊆ ω × ω → ḟ(ξ) = τξ. This implies that

⊩ τξ = ḟ(ξ)

for every ξ < ω1.

Put τ := {(op(ξ̌, τξ),1) : ξ < ω1}. Obviously, τ ∈ X. Now let G be P-generic over the ground

model. Then, because ḟ is forced to be a function,

ḟG = {(ξ, ḟG(ξ)) : ξ < ω1} = {(ξ, (τξ)G) : ξ < ω1} = {(op(ξ̌, τξ))G : ξ < ω1} = τG.

This shows that ⊩ ḟ = τ . ■

Given a poset P and a cardinal κ, write MAκ(P) for the statement “for every family D of dense
subsets of P with |D | ≤ κ, there is a filter G ⊆ P such that G ∩D ̸= ∅ for every D ∈ D .”

The following is well known. For a proof, see Lemma V.4.2 in [5].
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3.7 Proposition. MA(ℵ1) holds if and only if MAP(ℵ1) holds for every ccc poset P with |P| ≤ ℵ1.

3.8 Definition. Let P and Q be posets with P ⊆ Q (as first order structures). We say that P is
a complete subposet of Q, written P ⊆c Q, iff

Z if X ⊆ P is finite and has a lower bound in Q, then X has a lower bound in P,

Z if A ⊆ P is a maximal antichain in P, then it is also a maximal antichain in Q. ⌟

The key property of complete subposets is that, if G is P1-generic over the ground model, then
G ∩ P0 is P0-generic over the ground model.

While the definition of complete subposet seems to be a second order statement, one can
show

3.9 Lemma. The statement P ⊆c Q is absolute between transitive models of enough set theory.

For a proof, see Lemma III.3.72 in [5]

3.10 Definition. Let φ(α,⊴) denote the statement “α ∈ ON \ {0} and (α,⊴, 0) is a ccc forcing
poset” (so, 0 is the distinguished top element).

Fix a poset P. Write ψ(α, ⊴̇,P) iff ⊴̇ is a nice P-name for a subset of α× α and ⊩P φ(α̌, ⊴̇). ⌟

3.11 Lemma. Let P be a ccc forcing poset. Let G be P-generic over V . Suppose that, in V [G],
(α,≤α, 0) is a ccc poset, where α ∈ ON \ {0}. Then we can ⊴̇ such that ψ(α, ⊴̇,P) holds in V
and ≤α= (⊴̇)G.

Proof. In V [G], put α := |Q| and let ≤α= (τ)G be such that (α,≤α, 0) ∼= (Q,≤Q,1Q). Note that,
in V ,

⊩P ∃y[φ(α̌, y) ∧ (φ(α̌, τ) → y = τ)]. (8)

By the Maximal Principle, we can find a P-name σ such that

⊩P φ(α̌, σ) ∧ (φ(α̌, τ) → σ = τ). (9)

By 3.3, let ⊴̇ be a nice P-name for a subset of α× α such that ⊩P (σ ⊆ α× α→ σ = ⊴̇).

By (9), ⊩P σ ⊆ α× α, so that ⊩P σ = ⊴̇ and hence ⊩P φ(α̌, σ). This establishes that ψ(α, ⊴̇,P)
holds.

By (9), (α, ⊴̇G, 0) = (α, τG, 0) = (α,≤α, 0) ∼= (Q,≤Q,1Q), as desired. ■

3.12 Lemma. Suppose that P1 is ccc, P0 ⊆c P1, and ⊴̇ is a P0-name. Then ψ(α, ⊴̇,P1) implies
ψ(α, ⊴̇,P0).

Proof. Towards a contradiction suppose ψ(α, ⊴̇,P1) and ¬ψ(α, ⊴̇,P0) both hold. Fix p ∈ P0 such
that p ⊩P0

¬φ(α, ⊴̇). Let G be P1-generic over V with p ∈ G. Then, letting ⊴:= (⊴̇)G = (⊴̇)G∩P0
,

V [G] |= (α,⊴, 0) is a ccc forcing poset, (10)

but
V [G ∩ P0] |= (α,⊴, 0) is not a ccc forcing poset. (11)

Fix A ∈ V [G∩P0] such that V [G∩P0] |= A is an uncountable antichain in (α,⊴, 0). But A must
be uncountable in V [G] because P1 is ccc, and this contradicts (10). ■
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4 Completing the argument

Proof of 1.6. Assume GCH holds in the ground model V . Fix a bijection Γ : ω2 ↣↠ ω2 × ω2

satisfying Γ(ξ) = (ζ, µ) → ζ ≤ ξ. The standard Gödel pairing function used to show κ · κ = κ for
an infinite cardinal κ is such a function (for κ = ω2).

We build a finite support iteration
(
⟨Pξ : ξ ≤ ω2⟩, ⟨Q̇ξ : ξ < ω2⟩

)
of length ω2 with Pξ having the

ccc for every ξ ≤ ω2 and |Pξ| ≤ ℵ1 for every ξ < ω2. The final poset Pω2 will force MA(ℵ1) and
“(2ω1 , <ℓ) does not embed into (ωω, <∗)”.

Consider the sets

E := {γ + 2n : n ∈ ω ∧ γ < ω is a limit},
O := ω2 \ E

of even and odd ordinals below w2, respectively.

As we construct the iteration, once we have built Pζ , for ζ < ω2, we let ⟨(αµ
ζ , ⊴̇

µ
) : µ ∈ E⟩ list

all pairs (α, ⊴̇) such that 0 < α < ω2 and ⊴̇ is a nice Pζ-name for a subset of α × α. This is

possible because GCH holds in V and |Pζ | ≤ ℵ1, so 3.2 shows there are at most ℵℵ1
1 = ℵ2 many

such names.

We also need to list another collection of relevant names. Let D ⊆ 2ω1 be the set of eventually
constant sequences (this is all happening in V ). More precisely, x ∈ D iff there exist α < ω1 and
i < 2 such that x(ξ) = 2 for all ξ ≥ α. Note that D is <ℓ dense in 2ω1 , in the sense that for all
a, b ∈ 2ω1 with a <ℓ b there is some d ∈ D with a <ℓ d <ℓ b. By GCH, |D| = ℵ1. Now, suppose
π̇ is a Pζ-name for a function π̇ : D → ω̇ω. Applying 3.6 (with some enumeration of D in type
ω1), we can find a sequence ⟨π̇µ

ζ : µ ∈ O⟩ of Pζ-names such that, if π̇ is any Pζ-name for a map

from D into the reals (of the extension), then ⊩Pζ
π̇ = π̇µ

ζ for some µ ∈ O.

Since the iteration has finite supports, it suffices to specify what to do at successor stages. So, fix
ξ < ω2. Say (ζ, µ) = Γ(ξ).

If µ ∈ E , we let Q̇ξ be a Pξ-name for the trivial poset, unless it just so happens that ⊩Pξ

ψ(αµ
ζ , ⊴̇

µ
ζ , 0̌). In that case, we let Q̇ξ be (αµ

ζ , ⊴̇
µ
ζ , 0̌). To be completely formal, we should write

(Q̇ξ, ≤̇Qξ
,1Qξ

) = (αµ
ζ , ⊴̇

µ
ζ , 0̌), but we will avoid doing that.

If µ ∈ O, we let Q̇ξ be a Pξ-name for the trivial poset, unless it just so happens that

⊩Pζ
π̇µ
ζ : (D,<ℓ) → (ω̇ω, <∗) is order preserving. (12)

In that case, we proceed as follows. Let Gξ be Pξ generic over V and put π := (π̇µ
ζ )Gξ

. Since Pξ,

ωV
1 = ω

V [Gξ]
1 , so we’ll just write ω1.

Let X := (2ω1)V . For each b ∈ X\D, pick ⟨dbα : α < ω1⟩ and ⟨ebα : α < ω1⟩ which are <ℓ increasing
and decreasing, respectively, and such that

(I) for all α < ω1, d
b
α, e

b
α ∈ D,

(II) for all α < ω1, d
b
α <ℓ b <ℓ e

b
α,

(III) ⟨dbα : α < ω1⟩ and ⟨ebα : α < ω1⟩ both converge to b (as nets in order topology on (X,<ℓ)).

Put f bα := π(dbα) and gbα := π(ebα). Obviously, (⟨f bα : α < ω1⟩, ⟨gbα : α < ω1⟩) form an (ω1, ω1)-
pregap in (ωω, <∗) (in V [Gξ]). The key point is that they cannot all be filled:
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Claim 1. There is a b ∈ X \D such that (⟨f bα : α < ω1⟩, ⟨gbα : α < ω1⟩) is a gap.

Proof of claim 1. Suppose otherwise. For every b ∈ X \D, pick hb ∈ ωω such that f bα <
∗ hb <

∗ gbα
for every α < ω1. Now suppose b, c ∈ X \D are such that b < c. By density, find d ∈ D such
that b <ℓ d <ℓ c. By (III), pick α < ω1 such that

b <ℓ e
b
α <ℓ d <ℓ d

c
α <ℓ c.

Then
hb <

∗ gbα <
∗ π(d) <∗ f cα <

∗ hc.

This shows that the map X \D → ωω defines by b 7→ hb is injective. In particular, (|X \D| ≤
|ωω|)V [Gξ].

On the other hand, V , X \D has size ℵ2, because GCH holds. But Pξ is ccc, so (|X \D| = ℵ2)
V [Gξ].

On the other hand, by 3.5, CH holds in V [Gξ], so (|ωω| = ℵ1)
V [Gξ]. But then the previous

paragraph yields ℵ2 < ℵ1, contradiction. ⊣

Fix b ∈ X \ D such that (⟨f bα : α < ω1⟩, ⟨gbα : α < ω1⟩) is a gap. Let Q be the associated ccc
forcing as described in 2.9. Now step out back to V , and let Q̇ξ be a Pξ-name for this poset.

This completes the construction of the iteration. We now show that Pω2
forces MA(ℵ1)+“(2ω1 , <ℓ)

does not embed into (ωω, <∗)”. Being a finite support iteration of ccc posets, P is ccc, thus all
cardinals and cofinalities are preserved. Fix an enumeration D = {dα : α < ω1}. Write P := Pω2

to simplify the notation.

Let G be P-generic over V . We first show that V [G] |= (2ω1 , <ℓ) does not embed into (ωω, <∗).
Working in V [G], let π : (D,<ℓ) → (ωω, <∗) be an order preserving map, say π = π̇G. For each
α < ω1, let ḟα be a nice P-name for a subset of ω × ω such that π(α) = ḟα. Since P is ccc, ḟα (or
rather its transitive closure) mentions at most ℵ1 many conditions in P. We can therefore find
ζ < ω2 such that all the fα’s are Pζ-names (for subsets of ω × ω). Let

τ := {((op(α̌, ḟα)),1) : α < ω1}

Obviously, τ is a Pζ-name. Also, ⊩Pξ
τ = π̇ (and ⊩P τ = π̇).

Claim 2. ⊩Pζ
τ : (Ď,<ℓ) → (ω̇ω, <∗) is order preserving

Proof of claim 2. Let Gζ be Pζ generic over V and let H be R-generic over V [Gζ ], where R is the
factor poset P/Gζ . Put G = Gζ ∗H, which must be P-generic over V . In V [G], τG is an order

preserving map from (D,<ℓ) to ((ωω)V [G], <∗), because ⊩P τ = π̇. But the ḟα’s are Pζ names,

so (ḟα)G = (ḟα)Gζ
∈ (ωω)V [Gζ ]. So, τGζ

= τG : D → (ωω)V [Gζ ] and it must preserve the relevant
orderings because that is an absolute statement that holds in V [G]. ⊣

By construction, we can find µ ∈ O such that ⊩Pζ
τ = πµ

ζ . Let ξ < ω2 be such that Γ(ξ) = (ζ, µ).

In V [G ∩ Pζ ], there is some b ∈ X \D such that

(⟨f bα : α < ω1⟩, ⟨gbα : α < ω1⟩)

is a gap. By Claim 2 and the definition of Qξ+1,

V [G ∩ Pξ+1] |= (⟨f bα : α < ω1⟩, ⟨gbα : α < ω1⟩) is a strong gap.
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But being a strong gap is absolute, so

V [G] |= (⟨f bα : α < ω1⟩, ⟨gbα : α < ω1⟩) is a strong gap. (13)

Staying in V [G], this shows that π cannot be extended to an order preserving map (2ω1 , <ℓ) →
(ωω, <∗). Indeed, assume there was some extension π∗. Then, for any α < ω1, d

b
α <ℓ b <ℓ e

b
α, so

f bα <
∗ π∗(b) <∗ gbα.

But then π∗(b) fills the gap (⟨f bα : α < ω1⟩, ⟨gbα : α < ω1⟩), contradiction.

Taking stock, we’ve shown that, in V [G], no order preserving map π : (D,<ℓ) → (ωω, <∗) can
be extended to (2ω1 , <ℓ) → (ωω, <∗). But this means there can be no order preserving map
(2ω1 , <ℓ) → (ωω, <∗) at all in V [G], as was claimed.

The proof that V [G] |= MA(ℵ1) is very much the same as the usual proof of the consistency of
MA(ℵ1). We include it here for the reader’s convenience.

Work in V [G]. By 3.7, it suffices to show that MA(ℵ1)(Q) holds for every ccc Q such that
|Q| ≤ ℵ1. Fix such a Q and assume without loss of generality that Q is of the form (α,⊴, 0) for
some α < ω1. Using 3.11, find ⊴̇ such that ⊴= ⊴̇G and ψV (α, ⊴̇,P). In particular, ⊴̇ is a nice
P-name for a subset of α× α.

Fix a sequence ⟨Dδ : δ < ω1⟩ of dense subsets of (α,⊴, 0). For each δ < ω1, let Ḋδ be a nice
P-name for a subset of α such that (Ḋδ)G = Dδ. As before, we are considering ℵ1 many nice
names, so we can find some ζ < µ such that ⊴̇ and all the Ḋδ are Pζ-names. Fix µ ∈ E such that

(α, ⊴̇) = (αµ
ζ , ⊴̇

µ
). By 3.12, ψ(α, ⊴̇,P) implies ψ(αµ

ζ , ⊴̇
µ
,Pζ). But then Q̇ξ is (α, ⊴̇, 0), and so

Pξ+1 = Pξ∗(α, ⊴̇, 0). If we accordingly factorG∩Pξ+1 as (G∩Pξ)∗H, thenH ∈ V [G∩Pξ+1] ⊆ V [G]
is Q-generic over V [G ∩ Pξ]. But Dδ ∈ V [G ∩ Pξ] for every δ < ω1, and so H meets every Dδ.
This shows that MA(ℵ1)(Q) holds, and completes the argument. ■

5 Further results and questions

The question of whether KC implies CH was settled in the negative:

5.1 Theorem (Woodin, 1993). Assume CH. Let P be the usual forcing for adding ω2 many
Cohen reals. Then ⊩P ¬KC.

For a proof, see [8]. Higher values of 2ℵ0 are also compatible with KC, see [3].

Strengthening MA(ℵ1), we get a direct implication instead of the consistency result 1.1.

5.2 Theorem (Todorcevic). PFA implies KC.

This follows from Theorem 8.8 on page 76 of [7].

In [8], it is said that whether MA(ℵ1) implies KC is open. As far as I know, this is still the
case.

Going in a different direction, let X be the class of infinite compact Hausdorff spaces. Let φ(X) be
the statement “X ∈ X and, for every Banach algebra A, every algebra homomorphism C(X) → A
is continuous”. Is the theory

ZFC + ∃X,Y ∈ X[φ(X) ∧ ¬φ(Y )].

consistent?
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