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Preliminaries on trees

A tree is a pair (T, <T ) such that <T is a strict
partial order on T and {y ∈ T : y <T x} is well-
ordered for every x ∈ T . The height of x ∈ T , is
the order-type of {y ∈ T : y <T x}, and is denoted
htT (x). The set Tα = {x ∈ T : htT (x) = α} is the
αth-level of T .
Given x ∈ T , I(x) is the set of immediate suc-
cessors of x. A tree T is finitely branching if
|I(x)| < ℵ0 for every x ∈ T , and infinitely branch-
ing if |I(x)| ≥ ℵ0 for every x ∈ T .
A chain in a tree T is a subset of T which is linearly
ordered by <T . A branch is a maximal chain. A
cofinal branch is a branch which meets every level
of T .
A tree is said to be an ℵ1-tree if every level is count-
able and its height is ℵ1.
An tree is Aronszajn if it is an ℵ1 tree with no cofinal
branches.
An antichain in a tree is a set of pairwise incom-
parable elements of T . A tree is Suslin if it is an
Aronszajn tree with no uncountable antichains.
A subtree of a tree is a downards closed subset. An
infinitely branching tree is Lindelöf if it is an ℵ1-tree
with no uncountable finitely branching subtrees.

A topology on trees

Given a tree T , Nyikos defines the fine-wedge topol-
ogy on T to be generated by all sets of the form ↑x
and their complements, where x ∈ T and ↑x =
{y ∈ T : x ≤ y}.
A local base at x is given by all sets of the form
↑x \ ↑F , where F ⊆ I(x) is finite.
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The topology is Hausdorff (and more).
If we regard points on a tree as being “trivial” when-
ever |I(x)| < ℵ0, then being trivial in the tree sense
is the same as being trivial topologically (i.e. iso-
lated).

Trees as Lindelöf spaces

Basic open covers of a tree T can be coded by func-
tions f with domain T and f (x) ∈ [I(x)]<ω, namely

Uf = {↑x \ ↑f (x) : x ∈ T}.

The cover Uf has a countable subcover if and only
if Uf↾(T ↾α) covers T for some α < ω1.
A point x ∈ T is safe if for all y < x, x ∈ ↑f (y).
A safe point at level α is a witness to Uf↾(T ↾α) not
covering T .
The set of safe points is a finitely branching subtree
of T .

Theorem

An infinitely branching ℵ1-tree is Lindelöf if and
only if it has the Lindelöf property with respect
to the fine wedge topology.

Locating the class of Lindelöf trees

Branches can be regarded as 1-branching subtrees of
a tree, so Lindelöf trees are Aronszajn.
Suppose T is an infinitely branching Suslin tree. Let
S be an uncountable, finitely branching subtree of
T . Then S is also Suslin, and forcing with S adds a
cofinal branch through T , say b.
By general facts, b is generic for T over V .
Since T is infinitely branching and S is finitely
branching, T \ S is dense in T . So b ∩ T \ S ̸= ∅.
But b ⊆ S, contradiction.

Theorem

Suslin ⊆ Lindelöf ⊊ Aronszajn,

(♢) Special Lindelöf trees

An ℵ1-tree is special if it can be written as a count-
able union of antichains. Clearly, no Suslin tree is
special. On the other hand, it is consistent to have
a special Lindelöf tree.
Assume ♢ holds. Use the ♢-sequence ⟨Sα : α < ω1⟩
to construct an infinitely branching normal tree T
by recursion on levels, ensuring that Sα never grows
to be an uncountable finitely branching subtree of
T . In parallel, construct an order preserving func-
tion T → Q. The resulting tree is special and non-
Lindelöf.
At successor stages α = β + 1, put ℵ0 new nodes
immediately above every node on level β.
At limit stages α, for each x ∈ T ↾α build a cofinal
branch bx through T ↾α such that x ∈ bx and, if x ∈
Sα and Sα is finitely branching, then bx ̸⊆ Sα. This
is possible by the construction at successor stages.
Put a new node above bx on level α. This seals-off
Sα.

A non-Lindelöf Aronszajn tree

Fix a coherent sequence of injections eα : α → ω.
Use a bijection ω1 × ω → ω to obtain a coherent
sequence ⟨f [eα] : α < ω1⟩. Use this sequence to
build an Aronszajn subtree of <ω12, call it T .
Recursively grow new nodes at every point of T . The
outer tree remains Aronszajn but it not Lindelöf.
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Forcing tall subtrees

Let T be an infinitely branching ℵ1-tree. Let PT be
the poset of finite partial functions with dom(p) ⊆
T , p(x) ∈ [I(x)]<ω \ {∅} for every x ∈ dom(p) and,
if x, y ∈ dom(p) and x < y, then y↾(ht(x) + 1) ∈
p(x).
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Intuitively, p is a promise that, for each x ∈ dom(p),
the set of immediate successors of x in the generic
subtree is p(x).
Let Ṡ = {dom(p) : ∃p ∈ Ġ(x ∈ dom(p))}, where
Ġ is a PT -name for the generic filter.

Theorem

Let T be an infinitely branching normal Aron-
szajn tree. Then PT is ccc and ⊩PT

“Ṡ is a finitely
branching normal subtree of T ”. Also, T remains
Aronszajn in the PT -extension.

The poset PT is merely ccc, (consistently) not
Knaster, so why doesn’t it add branches?
Let ST be Baumgartner’s poset for specializing T
with finite conditions.. Both PT and ST are absolute.
Suppose G is P-generic over V and T has a cofinal
branch in V [G]. Then the same is true in V [G][H ],
where H is ST -generic over V [G]. But V [G][H ] =
V [H ][G] and, in V [H ], T is special, hence remains
special in V [G][H ], contradiction.

Theorem

If MAℵ1-holds, then there are no Lindelöf trees.

Other ways of adding subtrees?

One can show that if a poset is either countably
closed or strongly proper, then it cannot add a
new uncountable finitely branching subtree. Both
of these proofs use the topological characterization
of Lindelöfness.


