## Page Not Found

Page not found. Your pixels are in another canvas.

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Page not found. Your pixels are in another canvas.

About me

This is a page not in th emain menu

** Published:**

This post will show up by default. To disable scheduling of future posts, edit `config.yml`

and set `future: false`

.

** Published:**

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

** Published:**

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

** Published:**

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

** Published:**

Short description of portfolio item number 1

Short description of portfolio item number 2

Published in *To appear in _Proceedings of the American Mathematical Society_*, 2023

Published in * _Archive of Mathematical Logic_*, 2024

** Published:**

Unlike compactness, the Lindelöf property need not be preserved under products. The analogous properties at bigger cardinals leads one to large cardinal notions. We extend the classical Sorgenfrey plane construction to larger spaces, provided some cardinal arithmetic assumptions hold. This allows us to remove a hypothesis from a result of Buhagiar and Džamonja.

** Published:**

Given a tree $T$ , we can view a branch through $T$ as a subtree which is $1$-branching, i.e. each point on the branch has exactly one immediate successor on the branch. This point of view allows us to generalize the tree property by asking whether a tree can have tall subtrees with small branching number. In particular, we can ask whether an Aronszajn tree can have finitely branching subtrees of height $\aleph_1$. This leads to a class of trees which lies between those of Suslin and Aronszajn trees. In addition, such trees can be characterized as those having the Lindelöf property with respect to a reasonably nice topology.

Ayudante Alumno

2016-2018

Teaching assistant while a PhD student

2018-2024